Arealist Pro™
User Manual

\Version 9.9.5£>

e-Node
177 cours de I'Argonne
33000 Bordeaux

France www.e-node.net

http://www.e-node.net/alp
http://www.e-node.net

Q.

Arealist Pro

Contents

About Arealist Pro 16
What is AreaList Pro, and what can | do with it? e 16
Technical Details e 16

Compatibility Information. 16
Technical SUPPOIt 16

Installation 17
Installing the pPlugin 17
Using AreaList Proin Demo mode 17
LI CENSING . . o 18

DefiNItiONS . . . o e 18
LICENSE KEYS . . oo e e 18

Free updates. 18
LICENSE Y PES . . . 19
Registering your AreaList Pro License e 20
Quick and easy way — End-user online instant activation 20
Quick and easy way — Developer online instant activation 20
The Demonstration mode dialog 21
Retrieving the serial/machine information 21

Using the “Register” button 21
Registering Server lICENSES 22
Registering in Remote mode. 22
Registering on 4D Server e e 22

Merged liCenses NOES e 23

Using atext file e 24
USiNg AL _ REegiSter o 24
Combining Methods 24
Online registration. 25
Master” KeYS . . oo 25

PrOCESS . . 25
Userinterface 26

eMail notification 27

Table of Contents

Q.

Arealist Pro

Getting Started
with AreaList Pro 28
Creating your first Arealist Pro Area 28
Advanced Properties or Commands 2. it 28
Using the Advanced Properties Dialog. e 29
Working with AreaList Pro Commands and Functions 31
When to use the Commands and FUNCHIONS e e 31
Anatomy of an AreaList Pro Command 31
07T 018 o o =T 32
Getters and Setters. 32
EXample . .. 33
PrOp It eSS . . . o 33
Command Descriptions and Syntax. 33
COMMANGSo e 33
FUNCHIONS . oo 35
Copying or dragging from an AreaList Pro Area. 35
PrOpErtiES . . o o 35
Headers . ..o 35
Upgrading from Previous versions of Arealist Pro. e 36
Compatibility Mode 36
Compatibility Mode Behaviour. 37
What's Changed 37
Native LOOK.o 37
NeW AP L 37
Controls for Booleans 39
Drag and Drop.o 39
EVeNtS. . 40
Obsolete ComMaNds. 40
Picture Escape Codes. 40
PICtUIES . . . 40
Registering Arealist Pro 41
Spelling Checker. 41
VAt s NEW. . . e 41
Caching of Formatted Values 41
Column Hiding. 41
Displaylist. 41
Dynamic Row Height. 41
G . . 42
Hierarchical lists 42
Multi-styled text. 42
Native drawing of text 42

Table of Contents

Q.

Arealist Pro

TexXt StYliNg . .. 42

TrANSPAIENCY . . . ettt e 43

UNICOAE. . .. 43

Value Mappingottt e 43

Wrapped TeXto 43

XML, o 43

Column Automatic Resize e 43

ROW hiding . ..o e 44

Calculated columns in array Mode 44

Tutorial 45
Example 1: Loading an array from a 4D list. e 45
Example 2: Add header text. 48
Example 3: Creating arrays froma 4D table e 49
Example 4: Allow multi-row SeleCtion e 50
Example 5: Allow data entry via double-click 51
Example 6: Specifying which columns are enterable e 52
Example 7: Using a callback method to check data entry validity 53
1. Create the callback method 54

2. Tell AreaList Pro when to call the callback method 54
Example 8: Using both an Entry and Exit callback. 55
1. The Entry Callback method. 55

2. Tell AreaList Pro when to call the callback method 55
Example 9: Using an Event callback instead of the On PluginAreaevent 56
Example 10: Drag and drop between areas. 57
Example 11: Determining @ USer’s @Ction e 62
Example 12: Using Hierarchical Lists. 64
Example 13: Gridso 68
Example 14: Date Formatting Options 71
Example 15: Cell coordinates properties e e 72

Programming the Arealist Pro

User Interface 74
Entering Data. 74
Initiating Data Entry. 74

Two user Click MOdes 74

Click or double-click with optional modifiers 74

Click-hold 75

SUMIMAIY. . . e e e e 75

Editing 4D fieldso 75

Cell change Propertieso 76

UNAO” ValUE . . o o 76

Table of Contents

Q.

Arealist Pro

Saving field values 77
CheCKbOXES . . o o e 77

Bullet “Password” characters 78
Entering data in AreaList Pro with DisplayList. 78
Popup entry in specific cells 80
Leaving @ Cell. 80

BV ENES . o e 81
SOMING . . 81
The Sort Editoro 82
Button labels 82
Taking control of the Sort 83
Setting the sort indicator and sorted column list 83
Bypassing the Sort editor 83

UsSiNg 4D COde. 83

Using Arealist Pro 84

Internal Sorting 85
Calculated COIUMNS. e e 86
Comma-separated liSt VS array 87
Restoring highlighted selection 87
Typeahead 88
TEXt WEaDPING. . . o oo 89
Compatibility mode on. 89
Compatibility mode off. 89

TeXt StYlNG . . oo 90
ArEa PrOPEI IS oot 91
ColUMN Properties 92

ROW Properties 94

Cell Propertieso 95
ObjeCt Properties 96
Formatting 96
COlUMN PrOPEILY et e et e e e e 96
CUSIOM StYIES . . . o 96
Empty string for null dates. e 97

Using the debugger 97
Trace MOE.o 97
Getting the last error 98
Compiled MOde. 98
Read-only mode. 98
Using the Callback Methods 99
Callback Parameters 100
BN, . 100

Table of Contents

Q.

Arealist Pro

Area selected 101

Area deselected 101

Cell entered.o 101

Cell eXited . . .o 101

PopUD ENtrY . . 101

Edit menu action 102
Calculated ColUMN 102
Properties to use with Callbacks 103
A PrOP IS . . o oo 103
ColUMN PrOPEItY e 103
Setting up @ Callback. 104
VarNiNGS. . . oo 104
Calculated Column Callback 105
Using Callback Methods During Data Entry. e e e 106
Executing a Callback Upon Entering a Cell. e 106
Parameters 106

Click @CtioN . . .o 106

ENtry Mode . . o e 107

Popup menu entry. 107

Field mode parameter. 107

Executing a Callback Upon Leaving a Cell e 107
EXaMIDIES . . o 109
EXample 1. . e e 109
Example 2: Display @ ToOHip oot 110
Example 3: Using a Popup Callback to create dynamic popups 110
Columns 113
Compatibility mode 113
Compatible Mode ON. 113
Compatible mode off. 113
Column numbers in compatible mode off. 114
Modifying column displayo 114

Using Object Property Commands. e 114
Procedurally moving COlUMNS 115
ColUMN WIAENS . 115
USEr aUtO-SIZE. 115
PrOpEItieS . . . o e 115
Saving original settings 116
Column wider than the visible area. 116
Displaying column widths 116
HidiNg COlUMINS . . . 117
Hidden ColumMNS 117

Table of Contents

@

Arealist Pro

Number of hidden COIUMNSo e e e 117

Grid Clearning 117
Calculated COIUMNSo e e 118
Setting a Calculated Column (field mode). 118
Setting a Calculated Column (array mode)o 118
Setting the Callback Method 119

Field mode example 119

Array mode eXample. e 120
ColumMN diVIAErS 121
Possible Values. 121
EXampIES . oo 121
C0l0rS . et 121
Working with Colors 122
SPECIfYING COlOrS ottt 122
Color values passed as string values 123

Color passed in longint values 123

Color OPtiONS. . . oo 124
AT PrOP I S . . . o\ e 124
ColUMN Properties 125

ROW Propertieso e e e 125

Cell Properties e 126
Converting RGB ValUEs 126
Row Coloring Options 127
Combining bits in the Row Options property 127
Combining Alt Row color with Background Color. 127

EmMply FOWS . . . 127
Coloring Cell SeCHiONS e e e 129
SUMIMANY. .« . ot e e e e e e 129
EXample . . e 129
Getting started 130
Padding and Dividers 130
Background and Fill e 130

Text Editing 131

Cell OffSetS 131

BoOrders 131

Transparent Fill 131

Final ResuUlt. 132

Custom row highlight 133
Empty column background COlOr e 133
Setting the entire area to asingle COlOT 133
PatternNS . o o e 133

Table of Contents

Q.

Arealist Pro

The Advanced
Properties Dialog 134
The Advanced Properties Dialogo 134
Column Setup Tab 135
Default ColUMN 135
Apply to all ColumNS 135
Column Settings 135
General OptioNS. 137
Enterability 138
AAVANCEA. . . . 139
DraggiNg . . o oo 140
Source and Destination COdes 141
PV W L L L 142
Drag and Drop 143
OV VI W . o o ot 143
DraggiNg . . .o 143
[0 o] o7 o1 1 T S 143
e Y PES . . e 144
Controlling the Drag and Dropot e 144
Configuring Drag and Dropo ot 144
Setting the 4D Object Properties. 144
Drag and drop Properties o e 145
ACCESS “COUBS” OVEIVIEW. . . . o o e e e 145
Property list. . ..o e 145
Al/OPtiON KeY . . . o 146
What are acCess “CoUES” ?o 146
Drag and drop between plugin areas 146
Example (0N area). 147
Example (fWO areas)o e 147
Drag and drop with external objects 148
Using the Event callback method. e 149
AW ArOD . . ot e e e e 150
ARter the drop . . . o e 151
Receiving a drop from a non-ArealList Pro Object e 152
Allowing the drop from external objects inthe callback. 152
CalendarSet e 152
A . 153
External doCUMENtS 153
Setting Up the Area 154
Handling the Dropo e 155

Table of Contents

Q.

Arealist Pro

Uty . o 156

HINES @nd TIPS . . .ot 157
Row dragging in cell selection mode. 157
Dragging a row to the bottom of the list. e 157
Drag Line property 157
Drag and drop and compatibility mode 157
Reordering after dragging withinone area 158
ROWS . 158

COlUMIN 158
Selection mode effects 158
Dragging to @ 4D object 158
Disabling Drag and/or Drop with Read-only mode e 159
XML Lo 160
Data Entry Controls 161
Booleans Data ENtry e 161
EXample 1. . . e e 161
EXample 2. . . 161

DiSPlaY . . .o 162
EXample 1. . e e 162
EXample 2. . e 162

DAl . . 162
Inline Date Control e 162

Popup Date Control. 163

TiMIE « o o 164
Inline Time CoNntrol 164

Popup Time Control 164

POpUD MENUS . . . 165
Hierarchical POpUp MeNUS e e e e e e 165

GriAS . .o 167
LISt Style . . . e 167

Grid Style . .o 167
TerminOlOgy. . . . oo 168
Creating @ Grid e 169
Building the Grid Array 169

Filling the Arrayo 169
Creating the Grid. 170
EXample . .o 170
Re-ordering ROWS in @ Grid. o 171
Grid Properties 172
Area Propertieso 172

Column Properties e 172

ObjeCt Properties 172

Table of Contents

Q.

Arealist Pro

Hierarchical Lists 173
LISt Style . . oo 173

Hierarchical List Style e 173

How to create a Hierarchical List 174
Hierarchy Level. 174

EXpansion status. 174

EXample . . . 174

Hierarchical List Properties 176

Area Propertieso 176

Row Hierarchy Properties 177

ObjeCt Properties 177

PICtUNES . . . 178
Formatting picture COIUMNSo 178

Using a picture from a field or variable e 178

Using a picture from the 4D Picture Library. e 179
Displaying custom checkboxes using pictures 179

Flags . . . 179
EXamplEs . oo 180
EXample 1. . e e 180

EXample 2. . e 180

EXample 3. . . e e 180

EXample 4. . 180

EXample 5. . . e e 180

Alignment and offset 181

Offset . L o 181

WA, . 181

EXample . .. e 181

Displaying custom pictures instead of AreaList Pro's nativeicons 182
Setting CUSIOM ICONS 182

Internalicon IDs and Widths 182

Value MappiNg . . o oo 183
Example 1: Mapping using 4D’s menuU 183
Example 2: Mapping using PopupArray/PopupMap e 184
Commands by Theme 185
Using the Command Reference. e 185
Name of the command e 186
Parameters . . . 186
RESUIL . . . e 186
Parameter Descriptions. 187
Command DesCriptioN. 187
EXampIEs . o 187

Table of Contents

Q.

Arealist Pro

Command ThemES. 187
Y 1= PP 188
AL_AddCalculatedColumn 188
AL _AddCOIUMN L 190
AL_GetArealongProperty 191
AL _GetAreaPtrProperty 191
AL_GetAreaRealProperty 192
AL_GetAreaTextProperty 192
AL_RemoveColUMN e 193
AL_SetArealongProperty e 193
AL_SetAreaPtrProperty 194
AL_SetAreaRealProperty 194
AL_SetAreaTextProperty 195
AL SUPEIREPOI . . . o 195
COIUMINS. . oo 196
AL_GetColumnLongProperty 196
AL_GetColumnPtrProperty 197
AL_GetColumnRealProperty e 197
AL_GetColumnTextProperty e 198
AL_SetColumnLongProperty e 198
AL_SetColumnPtrProperty e 199
AL_SetColumnRealProperty 199
AL_SetColumnTextProperty e 200
ROWS . oo 201
AL_GetRowLongProperty 201
AL_GetROWPHIPIOperty o e 202
AL_GetRowRealProperty 202
AL_GetROWTEeXtProperty 203
AL MOdify AT AYS o 203
AL_SetRoOWLONGPIropEerty e 204
AL_SetRoWPHIProperty e 205
AL_SetRowWRealProperty e 205
AL_SetRowTextProperty 206
CellS. . . e e 207
AL_GetCellLongProperty e 207
AL_GetCellPtrProperty 208
AL_GetCellRealProperty 208
AL_GetCellTextProperty e 209
AL_SetCellLongProperty e 209
AL_SetCellPtrProperty 210
AL_SetCellRealProperty e 211
AL_SetCellTextProperty e 211

Table of Contents

Q.

Arealist Pro

(o] 1= o2 £ 212
AL_GetObjeCts . . . o e 212

AL _GetObjeCtS . . . o 213

AL SetOb eCtS . . . o e 213

AL _SetObjects? 214

Uty © 215
AL _DIOPAICA . . . o o ittt e e 215

oAreaListPro 215

AL COlOrPICKEr . 215

AL _Load . .o 216

AL Register . .. 216

AL _GetPlainText . .. e e 218

AL S aVE . . oo 219

AL Setlcon e 219

Properties by Theme 220
Arealist Pro Area Properties 221
ArealList Pro Area General Properties. 222
Arealist Pro Area Copy & Drag Properties 224
ArealList Pro Area Data Properties e 224
Arealist Pro Area Display Properties 225
Arealist Pro Area Drag & Drop Properties 228
ArealList Pro Area DropArea Properties. 230
ArealList Pro Area Entry Properties 230
ArealList Pro Area Event Properties. e e 233
ArealList Pro Area Plugin Properties 234
ArealList Pro Area Sort Properties. 237
AreaList Pro Column Properties. 239
Column General Properties. 240
Column Header Style Properties. 243
Column Footer Style Properties 244
Column List Style Properties. 245
AreaList Pro ROW Properties e 246
RoW NUMDbEIING . . . 246

Row General Properties 247

Row Hierarchy Properties 247

Row Style Properties. e 248
AreaList Pro Cell Properties. 249
Cell General Properties. e e 249

Cell Style Propertieso 251
AreaList Pro Object Properties. e 252

Table of Contents

Q.

Arealist Pro

Mapping 0ld Commands
to the AreaList Pro v9 API 254
DisplayList 261
AboUt Displaylist. 261
Incompatibilities e 261
DisplayList Commands 262
Displaylist 262
SetlistHeaders 262
SetListBULONS 263
SetlistSize . . . 263
SetListWidthso 264
SetlistFormats 264
SetListHArStyle . ..o 264
SetListOtyle . . . 265
SetListBehavior 265
SetListCOlOr . . . 266
SetListHArColor 267
SetListDIVIAErS . . o oo 267
Setlisthine 267
SetlistSelect 268
GetListBUON . . . 268
GetListWidths 268
GetlistSeleCt 269
SetLiStDONE . . . 269
Troubleshootingo 270
Why are one or more of my columns MisSiNg? 270
Why doesn’t the command key equivalent work for a button?. 270

Printing with

SuperReport Pro 271
HOW it WOTKS . . 271
Command and PrOPeIYo 272
AL _SUPEIREPOIt . . . e 272
Creating the report 272
EXample . o 273
Custom templates 273
Demonstration database code examples e 274
Print with SuperReport Pro (default template). e 274
Print with SuperReport Pro (custom template) e 274
Editing a custom template. 274

Table of Contents

Q.

Arealist Pro

Cache Management 275

Data updating, Data checking and Cache clearing 275

Three ProPerties oo e 275

EXampIEs . oo 275

Upgrading from previous AP 275

Arealist Pro version 8 refresh commands vs version 9 cache management. 276

Cache clearing or Data updatingt 276

UNNecessary UPAates o e 276

Appendix | Codes 277

AreaList Pro Error Codes. oo 277

ResUIt Codes 277

Error #-0030. . . . 278

Arealist Pro Event codes. 278

AreaList Pro Text Style Tagst 279

Property Values, Constants and XML Names e 281

ArealList Pro Edit Menu Constants 291

ArealList Pro Modify Arrays Constants e 291
Appendix II

Troubleshooting and FAQs 292

AL_Register returns Zero. 292

Undefined parameters 292

Empty titles in 4D VI .. 292

SCrOIING . . o oo 293

“Ghost” SCrolDars o 293

“Reveal” Propertiesot 293

Calculating the scrollbar and area width 294

Horizontal scrollbar modes 294

Scrolling to the top 295

Fixed row height and scroll position e 295

SCrolliNg t0 @ TOW 296

G . o 296

Defining @ grid. 296

Number of columns/rows in grid. e 296

LSt grid . . oo e 297

Grid formatting 297

CallbacKs . . . oo 298

POPUD MENUS . .. e e 298

Edit menu callback 298

Event Callback LOGIC. 299

Table of Contents

Q.

Arealist Pro

Properties . . .o e e 300
Properties setters types e 300
Using the Redraw property 300
FOrmatting e 301
FONt iSSUES . . . 301
Setting the format for a column 301
Displaying checkmarks 301
Headerso 302
Header Foreground Color on WIndOWS 7o e e 302
Header size and sort indicator 302
ROWS . o 303
Dynamic row height. 303
Row height and header/footer height. e 303
COlUMINS. .« o o 304
Double-clicking an enterable column e 304
CUStom COIUMN PrOPEItYo e e 304
Column width t00ItiPS 304
Calculated COlUMNS. e 305
Specific column color with alternate row coloring 305
Setting a multi-styled COlUMN 305
“Undefined Value” = Different array Sizes 305
EVENtS . o e 306
Selecting rows during the On load event. 306
Responding to USer @VENtS oo e 306
G- CliCK . . o e 306
HierarCny .« . o 307
Felds . . 307
HierarChy armays e 307
Compatibility Mmode 308
Advanced Propertieso e 309
Detecting a modified value in popup ENtry 309
No fields from local table in field mode. e 309
Index 310
Copyrights
and Trademarks 317

Table of Contents

About ArealList Pro

About Arealist Pro

What is Arealist Pro, and what can | do with it?

Arealist Pro is a plugin for 4D which makes it possible for you to create dynamic, feature-rich scrolling list areas on 4D forms. You have
a great deal of control over these areas — you can control many different options such as:

m Display either fields or arrays
m The appearance of the list: properties such as row coloring, text styling, row and column strokes
m What a user can or cannot do (for example, you may want to allow them to re-order the rows in one list, but not in another)

m Dragging and Dropping: specify where list items can be dragged and dropped to and from (e.g. from one area to another, or
within a list, or from an external file)

m Display hierarchical lists and grids
m Specify whether data can or cannot be edited

m ... and lots more!

Technical Details

Compatibility Information

Arealist Pro version 9.9.x is compatible with 4D v11 to v15, for both MacOS and Windows (including 32-bit and 64-bit servers).
It requires MacOS 10.5 or higher and Windows XP SP2 or better.

You do not have to update all your ArealList Pro areas and code immediately. Previous versions commands are still here
and will work with AreaList Pro version 9 with little or no change in your code. See the v8.5 manual for legacy commands
documentation as well as the Upgrading from Previous versions section.

Technical Support

Technical support for AreaList Pro is provided electronically via e-mail or our online support reporting system.

You are encouraged to use the online web forums.

Items that are new or modified in AreaList Pro version 9.8 are displayed in green characters.

Items that are new or modified in AreaList Pro version 9.9.x are displayed in pink (magenta) characters.

What is ArealList Pro, and what can | do with it? - Technical Details

|16

http://www.e-node.net/ftp/AreaListPro/8.5.2_Previous_Version/Documentation/AreaListPro8.5Manual.pdf
http://forums.e-node.net/

Q.

Installation

Installation

Installing the plugin

Arealist Pro is provided as a bundle for both Windows and MacOS: there is just one version for both platforms. To install it, simply
copy the file ALP.bundle into your Plugins folder.

Plugins folders can be located in one of two locations:

m In the 4D application folder (4D or 4D Server). When plugins are installed in this location, they will be available to every database
that is opened with that application.

m Next to the database structure file for your project: in this case, the plugin will only be available to that database. On MacOS, this
means that the Plugins folder must be placed within the database package or folder. To open a package, ctrl-click on the package
and choose Show Package Contents from the contextual menu.

Using ArealList Pro in Demo mode

You can use ArealList Pro in Demo mode for 20 minutes, after which time it will cease to work. When this becomes annoying, it's
time to buy a license, which you can do on our web site.

Licenses are either linked to the 4D product number, the workstation or the company name as described below.

Installing the plugin-Using AreaList Pro in Demo mode

http://www.e-node.net/alp

Q.

Installation

Licensing

Like all e-Node plug-ins, AreaList Pro offers several license types. There are no such things as MacOS vs Windows or Development
vs Deployment.

For current pricing, please see the ordering page on our website.

Definitions

m Regular licenses are used for applications that are opened with 4D Standalone or 4D SQL Desktop, or with 4D Server, either in
interpreted or compiled mode (doesn’t make a difference regarding plugin licensing).

These can be either single user or server databases and they are linked to the 4D or 4D Server license: you need to provide
the number returned by the “Copy” or “eMail” buttons from the plugin demonstration mode alert (this number is actually the 4D
command GET SERIAL INFORMATION first parameter). This number is a negative long integer such as -1234567.

m Merged licenses are used for double-clickable applications built with 4D Volume Desktop (single user) or with 4D Server by
means of the 4D Compiler module.
These licenses are linked to the machine ID (single user workstation or server): you need to provide the number returned by
the “Copy” or “eMail” buttons from the plugin demonstration mode alert (this number is calculated from the single user or server
machine UUID). On 4D Server any remote client will return the server number. This number is a positive long integer such as
1234567.

In both cases the demonstration mode dialog will display the proper number according to the current setup (regular or merged) and
the “Copy” and “eMail” buttons will use it as well.

License keys

m Final licenses keys are delivered by e-Node once you have provided the associated number as described above (4D serial
information or machine ID). They activate the plugin either though 4D code or the Register button from the demonstration mode
dialog.

m Master keys are delivered upon order if you opt for the Online instant activation system. The final license key is self-generated
by the plugin and stored into the license file, so you don’t have to bother with 4D serial information or machine IDs.

Free updates

m Regular licenses. A new license will be supplied for free at any time (maximum once a year) if you change your 4D version or get
a new 4D registration key for the same version, provided that your previous license match the current public version at exchange
time. This rule applies whether you are already using the new version or not: just specify that you also want a key for the older
version as well as the current one when you order an upgrade.

m Merged licenses. These licenses are independent from the 4D versions and product numbers. They will remain functional if you
upgrade e.g. from 4D v14 to 4D v15 on the same machine (single user workstation or server).

You'll only need to update a merged license if your machine or motherboard is replaced (a new license will be supplied for free
in this case, provided that your previous license match the current public version at the exchange time), or if you install a paid
upgrade of the plugin.

Note: if you are using several concurrent versions of 4D you will need one plugin license for each version.

Licensing

http://www.e-node.net/alp
http://www.e-node.net

Q.

Installation

License types

m Single-user. This license allows development (interpreted mode) or deployment (interpreted or compiled mode, including
merged) of applications that are opened with 4D Standalone or 4D SQL Desktop or built with 4D Volume Desktop.

m Server. These licenses allow development (interpreted mode) or deployment (interpreted or compiled mode, including merged
servers/remotes) on 4D Server with up to 10 users (“small server”), 11 to 20 users (“medium server”) or more (“large server”).

m Unlimited Single User. This license allows development (interpreted mode) or deployment (interpreted or compiled mode,
including merged) on any number of 4D Standalone (or single user merged applications built with 4D Volume Desktop) that run
your 4D application(s).

It is a yearly license, which expires after the date when it is to be renewed. Expiration only affects interpreted mode. Compiled
applications using an obsolete license will never expire.

A single license key will unlock all setups on all compatible 4D versions and all versions of the plugin. The license key is linked
to the developer/company name.

This license allows deployment (selling new application licenses, updates or subscriptions) while the license is valid. No new
deployment may occur after expiry without a specific license (merged or regular). End-users running deployments sold
during the license validity period remain authorized without time limit, provided that they are no longer charged for the application
using the plug-in (including maintenance or upgrades).

m OEM. This license allows development (interpreted mode) or deployment (interpreted or compiled mode, including merged)
on any number of 4D Servers (any number of users), 4D Standalone or single user/remote merged instances that run your 4D
application(s).

Itis a yearly license, under the exact same terms as the Unlimited Single User license described above, except that it also covers
server deployments.

= Unlimited OEM. This license is a global OEM license, covering any combination of the plug-ins published by e-Node, including
Arealist Pro, SuperReport Pro, PrintList Pro, CalendarSet and Internet ToolKit in all configurations.

m Partner license. This license matches 4D’s annual Partner subscription and covers all the plug-ins published by e-Node,
including Areal.ist Pro, SuperReport Pro, PrintList Pro, CalendarSet and Internet ToolKit.

For each product, a single registration key allows development (interpreted mode) or deployment (interpreted or compiled mode,
except merged) on all 4D Standalones and 4D Servers (2 users) regardless of 4D product numbers, OS and versions. No merged
applications.

This is a yearly license, expiring on February 15t (same date as 4D Partner licenses). Expiration only affects interpreted mode.
Compiled applications using an obsolete license will never expire.

Note: you don'’t have to be a 4D Partner subscriber to subscribe to the e-Node Partner license.

Licensing

http://www.e-node.net
http://www.e-node.net/alp
http://www.e-node.net/srp
http://www.e-node.net/plp
http://www.e-node.net/cs
http://www.e-node.net/itk
http://www.e-node.net
http://www.e-node.net/alp
http://www.e-node.net/srp
http://www.e-node.net/plp
http://www.e-node.net/cs
http://www.e-node.net/itk

Q.

Installation

Registering your Arealist Pro License

Once you have purchased your license, you will receive a registration key. This code must be registered each time the database
is started.

There are three ways to register your license:
m using the Demo mode dialog “Register” button,
m though a text file,

m in your 4D code with a command.

Both Register button and 4D code registrations can be performed in one single step through the Online registration system.

Yearly licenses such as Unlimited single user, OEM and Partner licenses do not require any serial information or online instant
activation. The only way to register these licenses is through the AL_Reqgister command.

Quick and easy way — End-user online instant activation

1. Make sure that the machine where the plugin will be used is connected to the Internet (single user workstation or in server mode the
first remote client that will connect to the server).

2. Launch your application. Displaying any layout that uses the plugin will trigger the demonstration mode dialog.
3. Enter the Master key that was delivered by e-Node.

4. The plugin will display an alert indicating that it is now registered.

Note: this method does not require your source code to be modified or recompiled.

Quick and easy way — Developer online instant activation

1. Put the following lines of code into your On Startup database method, with the Master key that you received and your email address:
C_LONGINT ($result)
$result:=AL_Register ("yourMasterKey";0;"youremail@something.xxx") //0 if successful

2. Make sure that the machine where the plugin will be used is connected to the Internet (single user workstation or in server mode the
first remote client that will connect to the server).

3. Install your application.

4. Launch your application. Displaying any layout that uses the plugin will silently (no dialog) register it.

5. You will receive an email with the final key that was issued and the IP address of the user site.

If the site has no Internet connection or if you want to use the plugin license system to help protect your own software copy, you can
manage the final key registration yourself using one of the following methods.

Registering your ArealList Pro License

http://www.e-node.net

Q.

Installation

The Demonstration mode dialog

The demonstration mode dialog is used for both Online instant activation and manual registration, unless the plugin is registrered
with a final key or master key through the 4D code.

When using manual registration, single user and server licenses require that you first send us the relevant information (serial or
machine ID, see Definitions).

Note: sending the serial information or machine ID is not needed with the Online instant activation system.

This action is performed from the Demo mode dialog, which is displayed upon the first call to the plugin.

To trigger this display and enable your users to register without actually calling a command or setting up an area, you can also pass
an empty string to AL_Register and the dialog will show:
C_LONGINT ($result)

$result:=AL_Register ("") //display the dialog

Note: calling AL_Register with any key (valid or invalid) will not display the dialog.

Retrieving the serial/machine information

The Demo mode dialog includes all relevant information (serial or machine ID, see Definitions) to obtain your license, as well
as a “Copy” button to put this information into your clipboard or a text file, an “eMail” button to email the information to e-Node’s
registration system and a “Register” button to enter your license key once received:

Using the “Register” hutton

Clicking on this button will display a standard 4D request to enter your registration key:

Registering your ArealList Pro License

Q.

Installation

Paste or drag and drop your registration key and, if correct, the plug-in will be registered for all future uses on this workstation:

Note: if 4D does not activate the Edit > Paste menu item click Abort and Register again, or try drag and drop.

Note: you can directly paste the Master key that was delivered when using the Online instant activation.

Registering Server licenses

Similarly, server licenses can be registered from the demonstration mode dialog without having to modify your code and use
AL_Register (which of course you can do with any license type). In this case, the 4D Licenses folder, serial information or machine
ID used will only be the 4D Server information, not the client workstation’s.

Server licenses can be registered on any client workstation (remote mode), or on 4D Server itself.

Registering in Remote mode

The server and all workstations can be registered from any single client workstation connected to the server. As in Single user
mode, the Demo mode dialog will be displayed on a client workstation when one of the following conditions are met:

m Calling an ArealList Pro command other than AL_Register with a non-empty parameter

m Calling AL_Register with an empty string

Use the Copy, eMail and Register buttons just as above and your server will be registered for all workstations.

Note: any other workstations previously connected (before registration occurred) will need to re-connect to the server to be
functional.

Registering on 4D Server

To directly register the server and all workstations from the server machine itself, you need to display the Demo mode dialog on
the server.

Call AL_Register with an empty string in the On Server Startup base method:
C_LONGINT ($result)
$result:=AL_Register ("") //display the dialog

Use the Copy, eMail and Register buttons just as above and your server will be registered for all workstations.

Note: the dialog will automatically be dismissed on the server after one minute in order not to block client connections
(the server is only available to client workstations once the On Server Startup method has completed).

Registering your ArealList Pro License

Installation

Merged licenses notes

Both methods can be either used with regular or merged servers and client workstations.
m Regular licenses are linked to the 4D Server serial information

m Merged licenses are linked to the 4D Server machine ID

Note: merged licenses will keep working if your 4D Server serial information is modified (upgrading or 4D Partner yearly
updates), or if any client workstation hardware is changed.

It will only need to be updated if the 4D Server hardware is changed, or if the plugin itself requires a new key (paid upgrades
upon major version changes).

You may want to register your merged server without having to turn off the database to modify the code. We have created a utility
database to manage this - it’s called Get Serial Info and you can download the appropriate version for your 4D version from the
e-Node server.

This is possible using any 4D setup on the server machine (such as a standard developer single user 4D). Keeping your production
server alive, open the Get Serial Info database with 4D on the same server machine. Ignore the demonstration mode dialog (if your
single user 4D is not registered for the plugin) and wait for the next Alert:

A text file is also saved with the same information.
The last line “Machine ID” is the number that you need to send in order to receive your merged server registration key.

You can also check the machine ID in standalone mode (or on any remote client with the built-client application or in interpreted
mode as long as it is running on the same server machine) using the following call:

C_LONGINT($machinelD)
$machinelD:= AL_GetAreaLongProperty (0;"mach")

Note: you don’t need an ArealList Pro license to do this.

Registering your ArealList Pro License

|23

http://www.e-node.net/ftp/GetSerialInfo/
http://www.e-node.net/ftp/GetSerialInfo/
http://www.e-node.net/ftp/GetSerialInfo/

Installation

Using a text file

Alternately, you can place a plain text file into your 4D Licenses folder.

To open this folder from 4D use the 4D Menu Help > Update licenses, then click the Licenses Folder button:

The text file must be called “ALP9.license4Dplugin” and be a plain text type file.

Just paste all your licenses for ArealList Pro v9.x, one per line, e.g.:
MyLicense1
MyLicense2

MyLicense3

Any license type can be included into this document, except unlimited single user, OEM and Partner licenses.

Note: the Demo mode dialog Register button actually does this: create the text file and include the license key, or add the
license key to the existing document if any.

Note: when using the Online instant activation system, the Master key is automatically converted to a Final key according to the
current environment and this final key is stored into the license file.

Using AL_Register
1. Open the On Startup database method
2. Call the AL_Register function with your registration key - for example:

$result:=AL_Register ("YourRegistrationKey") //result = 0 means registration was successful

If you have several licenses for different 4D setups you can call AL_Register multiple times in a row without further testing. See
the Example with multiple calls.

Combining methods

When such a file exists in the Licenses folder ArealList Pro will check for valid licenses from this document as a first action before
anything else (including checking any AL_Register command).

If a valid license is included into the “ALP9.license4Dplugin” document any calls to AL_Register will return zero (for “OK”).
Therefore you can mix modes and use the text file (or Register button) as well as the command.

Unlimited single user, OEM, temporary and Partner licenses can only be entered through the AL_Register command.

Registering your ArealList Pro License

|24

Q.

Installation

Online registration

As of version 9.9, ArealL.ist Pro provides an automated solution to register itself using an Internet connection.

This feature can be helpful whenever you don’t want to bother your end user with plugin registration, or want to save the time to
collect the serial/machine ID, or any other reason when you want the process to be entirely and automatically managed from the
client site.

It can also be used for your own development tools, removing the need to modify your 4D code to include or update registration
licenses.

Note: the site must have an open outgoing HTTP Internet connection available.

“Master” keys

The basic principle is that we deliver a non-assigned license key, called master key, which you use in your call to AL_Register in
your On Startup database method. This key will be used to generate valid keys for the plugin and environment, called final keys.

One single master key can generate as many final keys as you need, in case you order several licenses of the same kind (regular
or merged, single user licenses or server licenses of the same size).

A master key looks like a final key, except that the second part is the plugin code name (same as the license file name) instead of
the serial/machine ID, e.g. “123456-ALP9-xyz”.

Passing a master key as the first parameter to AL_Register when the plugin has not been previously registered by any of the
methods above will result in a connection attempt to e-Node’s license server as described below.

Master keys can also be entered by the user through the registration dialog. See Quick and easy way — End-user online instant
activation.

Process

If the plugin has not been previously registered (through online registration, text file, register button or AL_Register with a final key),
and if AL_Register receives a master key in its first parameter, it will recognize it a such, then:

1. Connect to e-Node’s license server.

2. Ask the server if the master key has not been assigned yet (or if the master key is designed to generate several final keys, if there
is any unassigned key up to that number).

3. Send the serial information (regular licenses) or the machine ID (merged licenses) to the license server.
4. If an error is detected (such as master key not matching the current setup) return an error to AL_Register

5. If the master key is valid, receive its final key from the license server then register itself (writing into the license file).

Note: if a final key has already been issued for this serial/machine ID using this master key, it is simply resent.

Registering your ArealList Pro License

Q.

Installation

User interface

In addition, AL_Reqister second parameter allows optional settings regarding the user interface in the online registration process.
C_LONGINT ($result)

$result:=AL_Register ("Master key";0 ?+1 ?+2 ?+3;"youremail@something.com") //all dialogs

Display a confirmation dialog hefore step 1

Display an alert at step 4

Display an alert at step 5

Registering your ArealList Pro License

Q.

Installation

eMail notification

The third parameter to AL_Reaqister (optional) is the developer email to whom the information will be sent (if this parameter is used
and non empty, of course).

The emailed information includes both the final key issued and the IP address from where it was requested (and to where it was
sent for registration).
m When a key is issued:
Title: ALP9 license
Body:
License 123456-123456789-abcdefgh
issued to 12.34.56.78

m When a key is resent:
Title: ALP9 license
Body:
License 123456-123456789-abcdefgh
resent to 12.34.56.78

The default mode (master key being passed as the only parameter) is silent: no confirmation, no alert, no email.

Registering your ArealList Pro License

Q.

Getting Started with ArealList Pro

Getting Started
with Arealist Pro

Creating your first Arealist Pro Area

It's easy to create your first AreaList Pro list area.
1. Create a new form, or open an existing one that you want to add a list to.

2. Choose Plug-in Area from the Plugin/Subform/Web Area button in the object bar:

“el Plug-in Area

| H==| Subform

Wi ‘Web Area

3. Your cursor will turn into a crosshair. Draw a box on the form in the size that you want your list to be. This will create a rectangular
box named Plugin Area.

4. In the Property List window, choose AreaListPro from the Type popup menu. (If the AreaListPro option is not available, please refer
to the installing the plugin instructions).

5. Enter a name for your new area in the Variable Name field in the Property List window.

6. Your area will now show the ArealListPro version and copyright information.

Advanced Properties or Commands?

You now have a choice: You can configure your list by using the easy-to-use point-and-click interface offered by the Advanced
Properties dialog, or you can use the AreaList Pro commands to control the list.

You can also use a combination of both methods.

The Advanced Properties dialog doesn’t require you to write any code, and is suitable for many projects. However, if you want to
have more control over your list, you can use the commands.

You can use both options together: you might use the Advanced Properties dialog to do most of the configuration for a list, and then
apply some commands to add some additional programmable control.

Creating your first AreaList Pro Area - Advanced Properties or Commands?

Q.

Getting Started with ArealList Pro

When you do this, the settings specified in the Advanced Properties dialog will be applied when the form is loaded, and then the
commands will be applied.
In the following sections we give a brief overview of how to work with both options; they are described in detail in other sections of

this manual.

Using the Advanced Properties Dialog

We will have a quick overview of the Advanced Properties Dialog here; you'll find a detailed explanation of it later in this manual.

To invoke the Advanced Properties Dialog, click on the Edit button next to Advanced Properties in the area’s Property List.

e _ Property List
1'[Plugin Area (product_list) ! ﬂ =
1

BN @ & 2 h @ -
¥ [} Objects

Type ArealistPro

Object Mame product_list

Variable Name products

v % Plug-in

The Advanced Properties Dialog opens:

-

Using the Advanced Properties Dialog

Q.

Getting Started with ArealList Pro

There are a few choices that you must make in order for your list to work, and there are lots of other choices that you can make to
configure it.

The first thing to choose is whether you want to display data from arrays or fields. Click on the Display: popup menu and choose
either Arrays or Fields.

1. Next you need to specify how many columns your list will comprise, and which arrays or fields will populate them. Add a column by
clicking on the big Plus sign in the Columns: area.

2. The area to the right of the Columns area changes. If you have chosen to display fields, it now looks like this:

3. Select the column that you want to assign a field to.

4. Choose a table from the Table: popup menu

5. Choose a field from the Field: popup menu.

6. Enter the column header into the Header Text: field.

7. Add some more columns

8. Click the OK button when you have added all the columns you need

9. Your list is now ready to use!

You can find a detailed explanation of the Advanced Properties dialog here.

Using the Advanced Properties Dialog

Q.

Getting Started with ArealList Pro

Working with ArealList Pro Commands and Functions

You can use the commands and functions to configure every aspect of an ArealList Pro area, and to get information about an area.
The commands and functions are grouped into themes according to the aspect of the area that they affect, such as Rows, Columns,
Sorting, Drag and Drop etc.

When to use the Commands and Functions

All AreaList Pro commands and functions need to be passed a reference to the area on which they will act. Since AreaList Pro
areas are initialised in the On Load phase of a layout, the commands must be called during this phase or afterwards; if you try to
call any AreaList Pro commands before the form has been loaded, you’ll get an error message because 4D does not recognise the
area reference.

If you do not issue any AreaList Pro commands in the On Load phase, and you haven’t chosen any fields or arrays in the Advanced
Properties dialog, nothing will be displayed in the AreaList Pro area on the form.

You can modify the area by making calls to commands during any other phase or from objects, such as buttons and menus, on the
form or in menu bars.

The commands can be used completely independently of the Advanced Properties dialog, or they can work in conjunction with the
options you set therein. For example, you might select the fields to display in the Advanced Properties dialog and then use some
commands to specify different coloring for each row according to some criteria that you specify.

The maximum number of columns that can be added to an area is 32767 (subject to memory limitations).

Anatomy of an ArealList Pro Command

Each command you write must adhere to a specific syntax in order for it to be correctly understood by AreaList Pro. Some commands
(the “getters” and the pointer variants) return a result code: these are functions. See the Command Reference section for the
requirements for each command. You can check the result code to find out if a function executed OK or if there was a problem and,
if so, get some information about what that problem was.

Every command consists of the command name followed by two or more parameters. The first parameter is always a reference to
the ArealList Pro area.

For example, the AL_AddColumn function adds a field or array column to an area:
Serr:=AL_AddColumn (area;->[table]fieldname;1)

This function adds a column to the area Arealist Pro area. The column displays data from the [table]fieldname field, and it will be
the first column in the area. If the column was added successfully, $err will be 0; if not, $err will contain an error number. You can
check the meanings of the error codes in the Result Codes list.

Commands that get or set properties for an area all include the property that you want to affect, and a value to use to specify an
option (if it's a “setter”) or to receive the result (if it's a “getter”). See the section on Getters and Setters, below.

All AreaList Pro commands are described in the Command Reference section along with examples of how to use them.

Working with AreaList Pro Commands and Functions

Q.

Getting Started with ArealList Pro

Debugger

In AreaList Pro default mode (and interpreted), errors will automatically display the 4D debugger window.

In compiled mode, an alert is displayed with the error code, the AreaList Pro command, the calling 4D method and the property
selector used.

See Using the debugger.

Getters and Setters

Most of the commands are either “getters” or “setters”: they either get information about a specific property, or they set a specific
property.

he Getters and Setters are each available in four variants, which allow for the different data types of the properties: Longinteger,
Pointer, Real, and Text.

For example, if you want to set a property for a column, you can use one of the following commands:
m AL_SetColumnLongProperty

m AL_SetColumnPtrProperty

m AL_SetColumnRealProperty

m AL_SetColumnTextProperty

The pointer options (e.g. AL_SetColumnPtrProperty) allow you to use just one version of the command for getting and setting all
the relevant properties; you pass a pointer to the variable instead of the actual value.

Getters, some Setters (the Pointer variants), and some other commands use the following syntax:

$result:=AL_Command (AreaRef;value1;value2;property;value3)

Most setters use the following syntax:

AL_Command (AreaRef;value1;value2;property;value3)

Command Part What it is Comments

$result Result code The code will contain O if the command executed
successfully, or an error code if it didn’t.

AL_Command Command name Tells AreaList Pro what you want to do.

AreaRef Name of the Arealist Pro area The name you gave the Arealist Pro area in the Object Properties dialog.
value1 A value to pass to the command Used with the Row, Column, and Cell commands, to pass the column or row
number.

value2 A value to pass to the command Used with the Cell commands to pass the row number.
property Property A constant representing the specific property you want to get or set.
value3 Value Tells AreaList Pro exactly how you want to affect the property.

Working with AreaList Pro Commands and Functions

Q.

Getting Started with ArealList Pro

Example

Let's suppose that we want to set the width for the first column in an ArealList Pro area called ProductList to 200. You could use
either AL_SetColumnLongProperty or AL_SetColumnPtrProperty:

AL_SetColumnLongProperty (ProductlList;1;ALP_Column_Width;200)

or
$W:=200
Serr:=AL_SetColumnPtrProperty (ProductList;1;ALP_Column_Width;->$W)

Conversely, we can find out what the current setting is by using the associated GET commands:
$W:=0
$W:=AL_GetColumnLongProperty (ProductList;1;ALP_Column_Width)

or
$W:=0
Serr:=AL_GetColumnPtrProperty (ProductList;1;ALP_Column_Width;->$W)

Properties

Each command theme has its own set of properties that can be used to get or set various aspects of the area, and for each property
a 4D constant has been defined.

You'll find a complete reference in the Properties by Theme section.

See the Tutorial section below to learn more about getting started with AreaList Pro.

Command Descriptions and Syntax

Arealist Pro has its own collection of commands and functions that you use to control your Arealist Pro areas, to find out what
actions the user has taken, and to do whatever processing is needed as a result of those actions.

For example, if the user drags a row from one Arealist Pro area to another, it's up to you to use the commands to do whatever is
required with the dropped row.

Commands

The commands are organised into themes which relate to a particular part of the ArealList Pro area: Area, Cells, Columns, Objects,
Rows, and some miscellaneous Utility commands. For each theme except Objects and Utility there is a group of four “Getter”
functions and four “Setter” commands, each targeting a different property type. For example, the Area theme has the following
Getters and Setters:

AL_GetAreal ongProperty AL_SetAreal ongProperty
AL_GetAreaPtrProperty AL_SetAreaPtrProperty
AL_GetAreaRealProperty AL_SetAreaRealProperty
AL_GetAreaTextProperty AL_SetAreaTextProperty

Working with AreaList Pro Commands and Functions - Command Descriptions and Syntax

Getting Started with ArealList Pro

An ArealList Pro command syntax looks like this:

AL_SetArealLongProperty (AreaRef:L;Property:T;Value:L)

AreaRef is the ArealList Pro area that the command refers to, and is always a longint.

Property is a constant representing the thing you want to set or get. Some commands accept one property, and some accept more.

Value is the value you want to use with the property.

In the example shown here, the value will always be a longint; there are other versions of the commands which require pointers,
real numbers, or text.

Each parameter is followed by a colon and a letter indicating the type of data required for that parameter:
iL - longint

:0 - blob

‘R - real

iT - text

Y - array

:Z - pointer

Note: boolean values are passed or returned as longints, where 1 = true and 0 = false.

For example, the ALP_Area_HideHeaders property has two options: — 1 to hide the headers and 0 to display them:
AL_SetArealLongProperty (AreaRef;ALP_Area_HideHeaders;0) //Header will be displayed

You can find complete descriptions of the commands, along with examples, in the Command Reference section, and descriptions
of all the properties in the Properties by Theme section.

This section includes details of how to use each property; the Type column tells you what type of data it requires, and this is
matched to the command variant.

For example, the following snippet shows the details for the ALP_Column_FtrSize property, which you can use to get or set the font
size for a column’s footer row:

Constant Get Set Per Type Default Min Max Comments
ALP_Column_FtrSize v v 4 real 12 on Windows 4 128 Font size
13 on MacOS

Note: Per stands for Persistent. See Properties by Theme.

The Type is Real, so you would use the AL_SetColumnRealProperty command to set the footer font size for the second column
to 10:

AL_SetColumnRealProperty (area;2;ALP_Column_FtrSize;10)

Note that Boolean properties are called as longints (1 = true, 0 = false).

Command Descriptions and Syntax

|34

Q.

Getting Started with ArealList Pro

Functions

Functions return a result code when they are called. Usually this will be the information you requested, such as the cell the user
clicked in, or the row that was dragged, or the column header that was clicked.

Their syntax looks like this:
AL_GetArealongProperty (area:L; Property:T) = result:L
AreaRef is the Arealist Pro area that the function refers to (always a longint).

Property is a constant representing the property you want to get information about result is the result of the function (a longint, in
this example).

For example, you can use AL_GetAreaLongProperty with the ALP_Area_SelRow option to find out which row the user selected:
C_LONGINT($row)
$row:=AL_GetAreaLongProperty (area;ALP_Area_SelRow)

Copying or dragging from an Arealist Pro Area

Arealist Pro supports Edit > Copy or Dragging from a selection of row or cells to any destination including to an external document
such as an Excel type spreadsheet.

Note: make sure that ALP_Area_DragRowMultiple is set to true when dragging a multiple row selection.

Properties

The contents will be copied as delimited text, the “field” (column) default separator being TAB and the “record” (row) default
separator being CR+LF. These settings can be modified using the ALP_Area_CopyFieldSep and ALP_Area_CopyRecordSep
properties.

Afield wrapper character can also be used, which will be placed both before and after each field (set with ALP_Area_CopyFieldWrapper,
default is none).

In addition, the ALP_Area_CopyHiddenCols property (default to 0 = false) is used to define whether hidden columns must be
included or not.

See Arealist Pro Area Copy & Drag Properties.

Headers

When the area is set as multiple row selection and headers are visible (ALP_Area_SelType set to 0 or not set, ALP_Area_SelMultiple
set to 1, ALP_Area_HideHeaders set to 0 or not set), setting ALP_Area_CopyOptions to true (1) will make the header text to be
copied into the pasteboard (or dragged to the destination) on top of the selected row values.

Command Descriptions and Syntax - Copying or dragging from an AreaList Pro Area

Q.

Getting Started with ArealList Pro

Upgrading from Previous versions of ArealList Pro

ArealList Pro version 9 is compatible with 4D versions 11 and above.

To upgrade to Arealist Pro version 9, simply install it as described in the Installation section of this manual, replacing your older
version.

Two major differences with previous versions

As opposed to v8.x (and earlier releases):

m AL_Register returns 0 if registration was successful

m The 4D project method Compiler_ALP is no longer needed

Compatibility Mode

You do not have to update all your AreaList Pro areas and code immediately. Previous versions commands are still here
and will work with AreaList Pro version 9 with little or no change in your code. See the v8.5 manual for legacy commands
documentation.

ArealList Pro version 9 will automatically run in v8 compatibility mode and ALP_Area_Compatibility is set to 1 when any of the following
conditions are met:

m the area is initialized from the old Advanced Properties
m the area is initialized from XML (Advanced Properties or from code)

m you set the ALP_Area_Compatibility property of AL_SetAreaLongProperty to 1

m one of the following commands is used:

AL_SetArraysNam
AL_InsArraysNam
AL_SetFields
AL_InsertFields
AL_SetRowOpts

AL_SetColOpts

The developer can switch compatibility mode on or off by setting ALP_Area_Compatibility (1 for on, 0 for off).

Upgrading from Previous versions of AreaList Pro

http://www.e-node.net/ftp/AreaListPro/8.5.2_Previous_Version/Documentation/AreaListPro8.5Manual.pdf

Q.

Getting Started with ArealList Pro

Compatibility Mode Behaviour

When running in compatibility mode, the following behaviours are different:

m the ALProEvt variable is created and updated

m visibility of columns is modified according to the number of hidden columns

m the area is made visible on update event

m wrap mode is only set depending on the number of row lines (ALP_XXX_Wrap properties are ignored)
m the area is draggable even if it is not set as draggable in the form properties

m when a row or column is drag and dropped in the same area, it is moved on drag end, not on drop

m headers on Windows 7 are drawn using pictures (eliminates native “white” Win7 headers)

m horizontal scrolling is set to columns (ALP_Area_ScrollColumns = 1)

m auto-selection of an unselected row when clicking a popup icon is disabled (ALP_Area_SelNoAutoSelect = 1)

What’s Changed

Native Look
ArealList Pro version 9 does not support themes as previous versions did: it uses the workstation’s current theme.
For example, to use “classic” Windows theme you must set it in the Windows system settings.

Therefore the appearance is always native (headers, scrollbars, highlight color, checkboxes and entry widget, except when in
compatibility mode and Windows 7 - headers are from Vista), only headers can be drawn the legacy v8.x way using the ALP_Area_
HeaderMode property.

Note: when both ALP_Area HeaderMode and ALP_Area ShowSortIndicator properties are not zero, the v8 sort order button is
displayed above the vertical scrollbar.

On Windows Vista, 7 and 8, value 2 to ALP_Area_ShowSortIndicator draws the sort (non native) triangle to the right, not on top.

See also Header size and sort indicator in the Troubleshooting/FAQ section.

New API

Arealist Pro version 9 introduces a completely new API, which is based on a full list of properties that the developer can get/set.
The previous APl is also still available and version 9 is generally compatible with existing version 8 code.

There are now fewer commands that you use to set and get an area’s properties. Each command affects just one property for the
area, making your code much easier to understand and debug.

The new commands are organised into themes which relate to a particular part of the AreaList Pro area: Area, Cells, Columns, Objects,
Rows, and some miscellaneous Utility commands.

For each theme except Objects and Utility there is a group of four “Getter” functions and four “Setter” commands, each targeting a
different property type.

Upgrading from Previous Versions of AreaList Pro

Getting Started with ArealList Pro

For example, the Area theme has the following Getters and Setters:

AL_GetArealLongProperty AL_SetArealLongProperty
AL_GetAreaPtrProperty AL_SetAreaPtrProperty
AL_GetAreaRealProperty AL_SetAreaRealProperty
AL_GetAreaTextProperty AL_SetAreaTextProperty

For example, the old AreaList Pro command AL_SetCopyOpts had four parameters to set copy options for the area:
m Include hidden columns

m Field separator for Edit menu copy

m Record separator for Edit menu copy

m Field wrapper for Edit menu copy

A call to this command would look something like this:

AL_SetCopyOpts (area;1;””;””;””) /linclude hidden columns in Edit menu Copy

/luse the default Field and Record delimiters for Edit menu Copy; no field wrapper
When debugging or modifying the code, it’s difficult to know what each of those parameters means.
In the new API, this would be replaced with four commands, each setting one option.

For example you could use the AL_SetAreaPtrProperty command:
bTrue:=True
tBlank:=""
Serr:=AL_SetAreaPtrProperty (area;ALP_Area CopyHiddenCols;->bTrue)
$err:=AL_SetAreaPtrProperty (area;ALP_Area_CopyFieldSep;->tBlank)
Serr:=AL_SetAreaPtrProperty (area;ALP_Area CopyRecordSep;->tBlank)
$err:=AL_SetAreaPtrProperty (arca;ALP_Area_CopyFieldWrapper;->tBlank)

Or you could use the AL_SetAreaLongProperty and AL_SetAreaTextProperty commands to achieve the same result:

AL_SetArealLongProperty (area;ALP_Area_CopyHiddenCols;1)
AL_SetAreaTextProperty (area;ALP_Area_CopyFieldSep;”)
AL_SetAreaTextProperty (area;ALP_Area_CopyRecordSep;”)
AL_SetAreaTextProperty (area;ALP_Area_CopyFieldWrapper;”)

Note that Boolean properties are called as longints (1 = true, 0 = false).

Don’t worry though - you will not need to re-write all your ArealList code.

|38

Most of your existing commands will still work; the old commands act as wrappers for the new ones. In fact you will still be able
to write new code using the old commands, but if you want to take advantage of the new features, you’ll need to use the new

commands.
Some of the old commands are now obsolete or are no longer relevant and should be removed from your code.

These are listed in the table below, along with details about how they should be replaced, where appropriate.

You'll find a complete list of the old commands and information about how they can be replaced with the new ones in the Mapping
Old Commands to the new API chapter, and a complete description of the new commands in the Command Reference section.

You can find a description of the new syntax in the Anatomy of an Areal.ist Pro Command section.

Upgrading from Previous Versions of AreaList Pro

Q.

Getting Started with ArealList Pro

Controls for Booleans
In previous versions of Arealist Pro, if you wanted to display checkboxes for Boolean values, you had to use a picture.

Now you can set the display and data entry controls using the ALP_Column_DisplayControl and ALP_Column_EntryControl
properties of AL_SetColumnLongProperty.

You can also use custom pictures with these properties.

Drag and Drop
In previous versions, ArealList Pro used its own drag and drop manager. It now uses 4D’s drag and drop manager.
Also, 4D until version 11 executed the drop in source process context, since version 11 it is executed in destination process context.
This means that you will need to make a few changes to your drag and drop handling.
For more information, see the Drag and Drop chapter for a complete explanation.

Event Handling
If a drag is initiated, AreaList Pro receives a drag event. But this has nothing to do with the actual drop: it could end anywhere (or
nowhere if the user pressed Esc - no drop). 4D does not inform ArealList Pro that the drag was not successful.

When a drop has occurred, an On Drop event is fired. AL_GetAreaLongProperty with the ALP_Area AlpEvent area property
will return AL Row drop event, AL Column drop event, AL Cell drop event or AL Object drop event in the destination context.

Accepting Drops from non-AreaList Pro objects

Arealist Pro accepts drags from and to non-Arealist Pro objects such as other 4D objects (in the same process or a different
one) and external files.

Object Properties

For an Arealist Pro area that you want to drag or drop to/from, select the appropriate properties in the object’s Property List
window (note that these properties are ignored in compatibility mode):

¥ E¢ Action
Method
Draggable
Automatic Drag
Droppable
Automatic Drop

DOl]@H

Automatic Scrolling

When the user drags something to an AreaList Pro area, the area’s contents will start to scroll (if necessary) when the object gets
near the AreaList Pro border. In AreaList Pro 8.5 this scrolling area was outside the ArealList Pro area; in AreaList Pro version 9
it is inside AreaList Pro area. The default frame size if 30 points; you can change this with the ALP_Area_DragScroll property of

ALP_SetArealLongProperty.

Upgrading from Previous Versions of AreaList Pro

Events

Q.

Getting Started with ArealList Pro

AL_GetLastEvent was added in AreaList Pro version 8.5; it returns the value of ALPEvt for a given area (or for all areas). In version
9, this command will only work if you are using AreaList Pro in compatibility mode.

If you are not using it in compatibility mode, and for all future development, you should use the ALP_Area_AlpEvent parameter of
AL_GetArealLongProperty to find out what the last event was.

Obsolete Commands

If you are using any of the following commands, you will need to remove them from your code:

Old Command

How to replace it

AL_DoWinResize

Obsolete.

AL_DragMgrAvail

No longer relevant; always true.

AL_GetAdvProps

Unsupported.

AL_GetHeaderOptions

Unsupported.

AL_GetSortEditorParams

Use the ALP_Area_SortTitle property in the ALP Area theme to get the sort editor title and ALP_Area_
SortPrompt to set the prompt. The other options are not supported. See the Sorting topic for more information
about sorting.

AL_InsertArrays

Replace with AL_AddColumn using a pointer to the array.

AL_InsertFields

Replace with AL_AddColumn using a pointer to the field.

AL_SetArrays

Replace with AL_AddColumn using a pointer to the array.

AL_SetCellFrame

No equivalent in the new API, but the old command will continue to work as before. The call sets properties
ALP_Cell_XXXBorderOffset, ALP_Cell_XXXBorderWidth and ALP_Cell_XXXBorderColor (where XXX is Top,
Left, Bottom, Right) for all the cells in a rectangle.

It is the same as calling AL_SetCellBorder in a loop.

AL_SetHeaderlcon Unsupported.
AL_SetHeaderOptions Unsupported.
AL_SetPictEscape Unsupported.

AL_SetSortEditorParams

Use the ALP_Area_SortTitle property in the ALP Area theme to set the sort editor title. The other options are not
supported. See the Sorting topic for more information about sorting.

AL_SetSubSelect

Obsolete.

AL_SetWinLimits

Obsolete: delete it.

Picture Escape Codes

Picture escape codes were mostly used to display controls (checkboxes) when Boolean fields/arrays were displayed. However,
Arealist Pro version 9 has the ALP_Column_DisplayControl property and can display native controls as well as custom pictures in
the list, so it makes this use of picture escape codes obsolete.

Pictures

The handling of pictures has changed in ArealList Pro version 9:

m lcons, PICTs and cicn from the resource fork are not supported

m The old call AL_SetHeaderlcon is not supported

m Picture escape codes are not supported

m AL_SetCelllcon now only supports pictures from the Picture Library. ‘cicn’ and ‘PICT’ resources are no longer supported. There
is a new mechanism for displaying icons (images) either in a list or in headers.

Upgrading from Previous Versions of AreaList Pro

Q.

Getting Started with ArealList Pro

The new properties are:

m ALP_Cell_LeftlconID

m ALP_Cell_LeftlconFlags
m ALP_Cell_RightlconID

m ALP_Cell_RightlconFlags

For more information about using these properties, please see the Pictures section.

Registering Arealist Pro

The AL_Register command takes just one parameter, and it returns 0 for OK and an integer between 1 and 12 if not OK. Mutliple
calls are allowed. There is a list of the registration error codes and their meanings here.

Spelling Checker

The spelling check function is no longer supported by 4D for plugin calls, so this option is not available.

What’s New

Caching of Formatted Values

ArealList Pro version 9 caches formatted displayed values. When Arealist Pro redraws the screen it does not need to access 4D.

Column Hiding

In previous versions, you could only specify which columns to hide at the end of the list of columns. Now you can use the
ALP_Column_Visible property of AL_SetColumnLongProperty to hide individual columns by making them invisible, and use
AL_GetColumnLongProperty to find out which columns are invisible.

Individual columns can also be made invisible by selecting the Hidden option on the first page of the Advanced Properties dialog.

DisplayList

The DisplayList plugin is now included with AreaL.ist Pro for backwards compatibility. You can find more information in the DisplayList
chapter.

Dynamic Row Height

Row height can now be set to dynamically auto-size depending upon the contents and styling of the data in the row.

Upgrading from Previous Versions of AreaList Pro

Q.

Getting Started with ArealList Pro
Grid
In previous versions, a row displayed the arrays (columns) in the defined order, and arrays at the end could be hidden. In ArealList

Pro version 9, the columns can also be displayed in a table format in which you control how they are arranged within the ArealList
Pro area. For example:

Type
Name Description
Price
Chocolate Better for you: dark chocolate has been shown

Dark Chocolate to have healthy qualities. How many more
.5 reasons do you need?
Chocolate Made with full-fat, organic milk.
Milk Chocolate
2.75
Chocolate The chocolate purist might argue that it's not
White chocolate really chocolate - but who cares?
2.5
Nuts An assortment of peanuts, cashew nuts, etc.
Nuts Supplied in a decorative blue and red tin.
2.25

In this example, there are four fields (Type, Name, Price and Description) displayed in two columns, with the data in the second
column (the Description) spanning three rows - like an HTML table.

See the Grid section for more information and instructions on how to use this feature.

Hierarchical lists

Arealist Pro version 9 is capable of displaying a Finder-like hierarchical list. This is implemented by setting a level (offset to the
right) and state (collapsed or expanded) for each row.

For more details on this feature, see the Hierarchical Lists topic.

Multi-styled text

Arealist Pro supports the multi-styled text feature of 4D v12. When 4D passes multi-styled text to ArealList Pro, it should be
displayed correctly if the ALP_Column_Attributed option has been set.

If this option is set, special tags can also be used in any text contained in an Arealist Pro area to display styled characters.

See Arealist Pro Text Style Tags.

Native drawing of text
Arealist Pro uses CoreText on Mac and GDI+ on Windows.
Only fonts and font faces supported by these technologies can be used in AreaList Pro. In particular, GDI+ does not support non-
TrueType fonts on some Windows versions.
Text styling
Many options are available to set text styles in headers, rows, footers or individual cells.

See the Text Styling topic for more details

Upgrading from Previous Versions of AreaList Pro

Q.

Getting Started with ArealList Pro

Transparency

You can now specify transparency in RGB colors.

See the Working with Colors topic for more info.

Unicode

Arealist Pro supports Unicode for display and data entry. Note that entry filters do not support Unicode, so their functionality is
limited to ASCII (original 7-bit) characters. In other words, if a filter is specified, only “printable” Unicode characters with code < 256
can be entered.

Value Mapping
Now you can map values from fields or arrays to defined parameters in a popup menu.

For example, you can map numeric values in a field to text equivalents. For more details, see Value Mapping in the Advanced Topics
chapter.

Wrapped Text

Text wrapping is now supported, using the ALP_XXX_ Wrap properties of the AL_SetXXXLongProperty commands. See Text
wrapping.

XML

An area’s settings can be saved as XML into a variable or field. Note that if 4D is run in non-Unicode mode, the size of any text is
restricted to 32k characters.

This should normally be enough, however it is recommended that you use the application in Unicode mode.

For more information, see the XML section.

Column Automatic Resize

The ALP_Area_AutoResizeColumn and ALP_Area_AutoSnapLastColumn properties can be used to have AreaList Pro automatically
resize any given column in an Arealist Pro area defined as horizontally growable in the 4D form editor, or simply because you want
a specified column to resize and make the last one snap to the right edge of the area without having to calculate its width.

These properties are also useful when converting ArealList Pro areas from previous versions will slightly modify the area size,
including width. This is due to the way the frames are handled in AreaList Pro v9.

m previous versions drew the area frame outside of the plugin area (which will never work in composite windows, for example)
m Arealist Pro v9 always draws inside the plugin area, so the usable area is smaller (2 points for plain box, 4 points for 3D frame)

m Arealist Pro v9 uses native scrollbar size (15 on Mac, previous versions used 16 points) - if the user sets the scrollbar size to 20
(on Windows), it will be used

m Arealist Pro v9 does not draw separator line between list and vertical scrollbar

For example, on MacOS (current scrollbar size is 15):
m for no frame: the list is expanded by 2 points (relative to AreaList Pro 8.5)
m for single line frame: the list size is the same

m for 3D frame (sunken): the list size is shrunken by 2 points

Upgrading from Previous Versions of AreaList Pro

Q.

Getting Started with ArealList Pro

In addition, on Windows not only the scrollbars are bigger, but the focus is drawn inside the ArealList Pro area. Therefore the usable
area is smaller by another 2 points. If set, the last visible column will be resized (ALP_Column_Width) to match the area size if
there is enough space left.

When initializing an AreaList Pro area from previous versions advanced properties, if all visible columns have a non-zero (fixed, not
automatic) width and the sum of all column widths is equal to the area width minus 1 (minus 16 if the vertical scrollbar is visible) and
the last column’s width after adjustment is at least 5 points, this property will be set to true.

Row hiding
The ALP_Row_Hide and ALP_Object_RowHide properties allow hiding of individual rows.

Calculated columns in array mode

Calculated columns are available in both field and array display modes. See Calculated Columns.

Upgrading from Previous Versions of AreaList Pro

Q.

Tutorial

Tutorial

The following examples illustrate how to use ArealList Pro.

You can find them all in the Examples database.

Example 1: Loading an array from a 4D list

In this example, a 4D list is loaded into an array and displayed in an ArealList Pro area, with some formatting applied.
When the user clicks on a row, its contents are copied into a variable called vitem and displayed below the ArealList Pro area.

First we create a new ArealL.ist Pro area on a form:

Example 1: Loading an array from a 4D list

http://www.e-node.net/ftp/AreaListPro/

The Arealist Pro area Object Method handles all the formatting and events:

Case of

: (Form event=0n Load) //initialize the AreaList Pro object
LIST TO ARRAY("City, State";aCityState) //copy the list into an array
Serror:=AL_AddColumn (eList;->aCityState) //display array in AreaList Pro object
DEMO_Default (eList) //general display settings
AL_SetArealLongProperty (eList;ALP_Area_SelRow;1) //row 1 selected
vitem:=aCityState{1}

: (Form event=0n Plug in Area) //respond to user action
If (AL_GetAreaLongProperty (eList;ALP_Area_AlpEvent)=AL Single click event)

/I single-click on a row (or up/down arrow keys)
$row:=AL_GetArealLongProperty (cList;ALP_Area_SelRow) //get the row selected
/Il OR
$row:=AL_GetAreaLongProperty (cList;ALP_Area_ClickedRow) //row the user clicked
vltem:=aCityState{$row} //get the value in that element of the array
End if //ALP_Area_AlpEvent

End case

This is the result when you choose Example 1 from the Examples menu:

Ve N

Q.

Tutorial

Example 1: Loading an array from a 4D list

Q.

Tutorial

Let’s take a look at the commands that were used.
1. Loading the arrays. On the Object Method for the eL.ist object, the following code loads the array and adds it to the Areal.ist Pro area:
Case of
: (Form event=0n Load) //initialize the AreaL.ist Pro object
LIST TO ARRAY ("City, State";aCityState) //copy the list into an array
$error:=AL_AddColumn (eList;->aCityState) //display array in AreaList Pro object

2. Apply some formatting. The DEMO_Default project method is called:
$AL_Area:=$1 //$1 is received as the area reference
AL_SetArealLongProperty (AL_Area;ALP_Area HideHeaders;0) //Header will be displayed
AL_SetArealLongProperty (AL_Area;ALP_Area_ShowFooters;0) //Hide footer

If (IsWindows =1) //The IsWindows project method returns True if the platform is Windows

/I Set header properties
AL_SetColumnTextProperty (SAL_Area;0;ALP_Column_HdrFontName;"Tahoma")
AL_SetColumnLongProperty ($AL_Area;0;ALP_Column_HdrSize;11) //Font size
AL_SetColumnLongProperty (5AL_Area;0;ALP_Column_HdrStyleB;1) //Bold
/I Set column properties
AL_SetColumnTextProperty (SAL_Area;0;ALP_Column_FontName;"Tahoma")
AL_SetColumnLongProperty ($AL_Area;0;ALP_Column_Size;11)
AL_SetColumnLongProperty (SAL_Area;0;ALP_Column_StyleB;0)
Else //MacOS
// Set header properties
AL_SetColumnTextProperty (SAL_Area;0;ALP_Column_HdrFontName;"Lucida Grande")
AL_SetColumnLongProperty ($AL_Area;0;ALP_Column_HdrSize;11)
AL_SetColumnLongProperty (SAL_Area;0;ALP_Column_HdrStyleB;1)
/I Set column properties
AL_SetColumnTextProperty ($AL_Area;0;ALP_Column_FontName;"Lucida Grande")
AL_SetColumnLongProperty ($AL_Area;0;ALP_Column_Size;11)
AL_SetColumnLongProperty ($AL_Area;0;ALP_Column_StyleB;0)
End if
// Set the area properties
AL_SetArealLongProperty (AL_Area;ALP_Area_NumHdrLines;1) //Line(s) in header
AL_SetArealLongProperty ($AL_Area;ALP_Area_NumRowLines;1) //Line(s) per row in list
AL_SetAreaRealProperty (SAL_Area;ALP_Area_RowlIndentV;3) //Height padding 3 points

Example 1: Loading an array from a 4D list

Q.

Tutorial

When you click on a row in the area, its contents are displayed in the text area below. The On Plug in Area 4D event monitors
clicks in the area (or up/down arrow keys), and we can then call AL_GetAreaLongProperty with either the ALP_Area_SelRow or
ALP_AreaClickedRow property to get the selected row number:

Case of
: (Form event=0n Plug in Area) //respond to user action
If (AL_GetArealLongProperty (eList;ALP_Area_AlpEvent)=AL Single click event)

/I single-click on a row (or up/down arrow keys)
$row:=AL_GetAreaLongProperty (cList;ALP_Area_SelRow) //get the selected row

vitem:=aCityState{$row} //get the value in that element of the array
End if

Or we could call (but it would only react to click, not up/down arrow selection):
$Srow:=AL_GetAreaLongProperty (cList;ALP_Area_ClickedRow) //get the clicked row

Example 2: Add header text

In Example 1 our ArealList Pro area looked OK, but it would look better if there was some text in the header row - for example:

Header row text is added using AL_SetColumnTextProperty with the ALP_Column_HeaderText parameter in the area’s Object
Method:

AL_SetColumnTextProperty (elList;1;ALP_Column_HeaderText;"City, State")

Example 2: Add header text

Q.

Tutorial

Example 3: Creating arrays from a 4D table

In this example, two arrays are loaded from the database, added to the ArealList Pro area, and displayed with headers:

Ve ~

ALL RECORDS([Cities]) //load all records in the Cities table

SELECTION TO ARRAY/([Cities]City;aCity;[Cities]State;aState) //copy field values into arrays
$error:=AL_AddColumn (eList;->aCity) //display array in AreaList Pro object
Serror:=AL_AddColumn (elist;->aState) //display array in ArealList Pro object
AL_SetColumnTextProperty (eList;1;ALP_Column_HeaderText;"City") //first column header
AL_SetColumnTextProperty (elList;2;ALP_Column_HeaderText;"State") //second column header
DEMO_Default (eList) //general display settings

AL_SetColumnRealProperty (eList;1;ALP_Column_Width;350) //fixed width for column 1
AL_SetArealLongProperty (eList;ALP_Area_AutoSnapLastColumn;1) //calculate column 2 width to area edge
AL_SetArealLongProperty (eList;ALP_Area_SelRow;1) //row 1 selected

vitem:=aCity{1}+", "+aState{1}

We could also have used the AL_SetObject command to add the arrays:
ALL RECORDS([Cities])
SELECTION TO ARRAY([Cities]City;aCity;[Cities]State;aState)
ARRAY POINTER(aPtrCols;2)
aPtrCols{1}:=->aCity
aPtrCols{2}:=->aState
$error:=AL_SetObjects (eList;ALP_Object_Columns;aPtrCols)

Example 3: Creating arrays from a 4D table

Tutorial

Example 4: Allow multi-row selection

The default row selection method is single rows. In this example we build on Example 3 and enable the selection of multiple rows:

-

In the Object Method for the ArealList Pro area we’ve added two commands:
AL_SetArealLongProperty (eList;ALP_Area_SelMultiple;1) //set multi-row selection mode

With this option selected, the user can Ctrl-click (Windows) or Cmd-click (Mac) to select multiple rows.

Note that the text area lists all the selected rows. We use the AL_GetObjects function to find out which rows were selected:
Case of

: (Form event=0n Plug in Area) //respond to user action
If (AL_GetAreaLongProperty (eList;ALP_Area_AlpEvent)=AL Single click event)
/I single-click on a row (or up/down arrow keys)
ARRAY LONGINT(aRows;0)
$error:=AL_GetObjects (elList;ALP_Object_Selection;aRows) //get the rows selected by user

vitem:=

For ($i;1;Size of array(aRows)) //look at each row selected by user
vitem:=vitem+aCity{aRows{$i}}+" "+aState{aRows{$i}} //plug values in vitem
If ($i<Size of array(aRows)) //not the last item

vitem:=viltem+" - " //separator

End if

End for

End if //ALP_Area_AlpEvent
End case

Example 4: Allow multi-row selection

|50

Q.

Tutorial

Example 5: Allow data entry via double-click

In many cases you simply want to display data without allowing it to be modified. Sometimes, however, you may want to allow the
user to modify certain data.

To enable that, you can use the ALP_Area_EntryClick property using the command AL_SetArealLongProperty:

AL_SetArealLongProperty (eList;ALP_Area_EntryClick;2) //set double click to enter data entry mode

Example 5: Allow data entry via double-click

Q.

Tutorial

Example 6: Specifying which columns are enterable

In Example 5 we applied the “entry by double-click” property to the entire area. But what if you only want certain columns to be
enterable?

This can be controlled via the ALP_Column_Enterable property and the associated command AL_SetColumnLongProperty:

AL_SetColumnLongProperty (elList;1;ALP_Column_Enterable;0) //set column 1 to be non-enterable

You can similarly control enterability for individual cells with the AL_SetCellLongProperty command:
AL_SetCellLongProperty (elList;1;2;ALP_Cell_Enterable;0)

/I set the cell at row 1, column 2 to be non-enterable

Example 6: Specifying which columns are enterable

Q.

Tutorial

Example 7: Using a callback method to check data entry
validity
A “callback” is a 4D project method which is executed by a plug-in.

ArealList Pro lets you make use of callbacks when entering and exiting an ArealList Pro object. See the Callbacks section for more
detailed information.

In this example we are using a callback when an entry in the State column is modified to make that a valid State abbreviation has
been entered; if it hasn’t, the user will see an Alert:

There are two things you need to do to get a callback working: create the callback method, and tell AreaList Pro when to call it.

Example 7: Using a callback method to check data entry validity

1. Greate the callback method

Our callback method is called ExitCallback:
C_BOOLEAN($0) //"data valid" return value (True or False)
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //action terminating data entry for this cell
If (52#AL Esc key action) //escape key will ignore (and reset) entered data
If (AL_GetArealLongProperty ($1;ALP_Area_EntryModified)>0) //was a cell modified?
vRow:=AL_GetArealLongProperty ($1;ALP_Area_EntryRow) //find out which row
/lonly the state array col 2 will be checked, we don’t need to worry about the entered column
LIST TO ARRAY("State Abbrev";aPossStates) //create a new array of all possible States
ARRAY POINTER($ArrayNames;0)
$error:=AL_GetObjects ($1;ALP_Object Columns;$ArrayNames)
If (Find in array(aPossStates;$ArrayNames{2}->{vRow})=-1) //is modified element not valid?

$0:=False //tell AreaList Pro it is invalid — this forces the user to re-enter it
BEEP //provide user feedback
ALERT($ArrayNames{2}->{vRow}+" is not a valid state abbreviation. Please re-enter.")
Else
$0:=True //tell ArealList Pro entry is valid
End if
Else
$0:=True //tell ArealList Pro entry is valid
End if
End if

2. Tell ArealList Pro when to call the callback method

This uses the ALP_Area_CallbackMethEntryEnd property of AL_SetAreaTextProperty:
AL_SetAreaTextProperty (elList;ALP_Area_CallbackMethEntryEnd;"ExitCallback")

Tutorial

|54

Example 7: Using a callback method to check data entry validity

Q.

Tutorial

Example 8: Using both an Entry and Exit callback

Entry callbacks can be used to control what happens when a cell is entered. In this example, we want to skip (disallow) data entry
in the first column if the corresponding State is CA.

1. The Entry Callback method

C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //entry cause
C_LONGINT($3) //only useful when fields are being displayed
vRow:=AL_GetArealLongProperty ($1;ALP_Area_EntryRow) //find out which cell
vCol:=AL_GetArealLongProperty ($1;ALP_Area_EntryColumn)
ARRAY POINTER($ArrayNames;0)
$error:=AL_GetObjects ($1;ALP_Object_Columns;$ArrayNames)
If (vCol=1) //city
If (ArrayNames{2}->{vRow}="CA") //pointer to second column array (state)
AL_SetArealLongProperty ($1;ALP_Area EntrySkip;1)
End if
End if

2. Tell ArealList Pro when to call the callback method

AL_SetAreaTextProperty (cList;ALP_Area_CallbackMethEntryStart;"EntryCallback")

Example 8: Using both an Entry and Exit callback

Q.

Tutorial

Example 9: Using an Event callback instead of the On
Plug in Area event

This example shows how a generic event callback project method can be installed to replace the On Plug in Area event.

This is performed with the AL_SetAreaTextProperty command using the ALP_Area_CallbackMethOnEvent property, which
instructs ArealList Pro to call the EventCallBack09 project method instead of sending the On Plug in Area event to the object
method and form method:

Case of
: (Form event=0On Load)
AL_SetAreaTextProperty (eList;ALP_Area_CallbackMethOnEvent;"EventCallBack09") //set event callback

End case

The EventCallBack09 method checks various AreaList Pro Events to find out what triggered the callback and what to do about it:
C_LONGINT($0) //object method and form method will not be executed if 0
C_LONGINT($1) //AreaList Pro area
C_LONGINT($2) //ArealList Pro event
C_LONGINT($3) //4D event
C_LONGINT($4) //last clicked column (or column under the pointer for mouse moved event)
C_LONGINT($5) //last clicked row (or row under the pointer for mouse moved event)
C_LONGINT($6) //modifiers
ARRAY LONGINT(aRows;0)
$error:=AL_GetObjects ($1;ALP_Object_Selection;aRows) //get the rows selected by user

evtUpdateText (->vItem;->aCity;->aState) //event description
$0:=0 //event handled

The evtUpdateText method updates the variable at the bottom of the list:

C_POINTER($1) //-> variable

C_POINTER($2) //-> city array

C_POINTER($3) //-> state array

C_LONGINT($i)

$1->=""

For ($i;1;Size of array(aRows)) //look at each row selected by user (aRows populated by event callback)
$1->:=$1->+$2->{aRows{$i}}+" "+$3->{aRows{$i}} //plug values in the text variable
If ($i<Size of array(aRows)) //not the last item

$1->:=$1->+" - " //separator

End if

End for

Example 9: Using an Event callback instead of the On Plug in Area event

Q.

Tutorial

Example 10: Drag and drop between areas

This example demonstrates how dragging rows between ArealList Pro areas (and within the same area) can be allowed with the
Alt/Option key.

There are two Arealist Pro areas and two text areas on the form:

The Draggable and Droppable options have been selected for both of the ArealList Pro areas, so that rows can be dragged and
dropped freely between the areas.

When it is initially opened, the area on the left contains a list of cities and states, and the area on the right is empty.

You can move a row (or multiple rows) from the left area to the right area or conversely, or within the same area by holding down
the Alt or Option key as you drag it:

Example 10: Drag and drop between areas

Q.

Tutorial

When a row is dragged, the text areas are updated to display what was dragged, and the two areas are updated: the dragged row
is removed form the source area and added to the destination area. Within the same area, the rows are moved to the destination.

To control this, the Draggable and Droppable actions are checked in both areas, as well as On Load and On Drop events (with
Arealist Pro v9.x the drag and drop is entirely managed in the destination area object method):

The area object methods react to On Load and On Drop events.

Left area:
Case of
: (Form event=0n Load) //initialize the AreaList Pro object
ALL RECORDS([Cities]) //load all records in the Cities table
SELECTION TO ARRAY([Cities]City;aCityLeft;[Cities]State;aStateLeft) //copy field values into arrays
$error:=AL_AddColumn (Self->;->aCityLeft) //display array in column 1
$error:=AL_AddColumn (Self->;->aStateLeft) //display array in column 2
dragAreaSetup (Self->)
AL_SetAreaTextProperty (Self->;ALP_Area_CallbackMethOnEvent;"EventCallBack10")
/I set event callback
AL_SetArealLongProperty (Self->;ALP_Area_SelRow;1) //row 1 selected

vitemLeft:=aCityLeft{1}+", "+aStateLeft{1} //initialize text variable to row 1 values

: (Form event=0n Drop)
AlpOnDrop

End case

The Event callback method EventCallBack10 is a slight variation from EventCallBack09 because we have two areas, with a text
variable for each:

If ($1=eListLeft) //left area

evtUpdateText (->vItemLeft;->aCityLeft;->aStatelLeft)
Else //right area

evtUpdateText (->vIitemRight;->aCityRight;->aStateRight)
End if

Example 10: Drag and drop between areas

Q.

Tutorial

Right area:
Case of
: (Form event=0n Load) //initialize the AreaList Pro object

ARRAY TEXT(aCityRight;0) //empty arrays in this area
ARRAY TEXT(aStateRight;0)
$Serror:=AL_AddColumn (Self->;->aCityRight) //display array in column 1
$error:=AL_AddColumn (Self->;->aStateRight) //display array in column 2
dragAreaSetup (Self->)
AL_SetAreaTextProperty (Self->;ALP_Area_CallbackMethOnEvent;"EventCallBack10")

// set event callback

vitemRight:=""
: (Form event=0n Drop)
AlpOnDrop
End case

The dragAreaSetup project method sets headers, width, etc. as well as drag and drop properties:
AL_SetAreaTextProperty ($1;ALP_Area_DragSrcRowCodes;"drag") //set source access code

AL_SetAreaTextProperty ($1;ALP_Area_DragDstRowCodes;"drag") //set destination access code

AL_SetArealLongProperty ($1;ALP_Area_DragRowMultiple;1) //multiple rows dragging

AL_SetArealLongProperty ($1;ALP_Area_DragRowOnto;0) //Between rows (disable On row)

The AlpOnDrop project method takes care of the whole drag and drop action:
C_STRING(20;$selectedObject)
C_LONGINT(S$error)
C_LONGINT($dragDstRow;$dragDstCol;$dragSource;$dragSrcRow;$dragSrcCol;$dragDest;$dragType)
$dragDstRow:=AL_GetArealLongProperty (Self->;ALP_Area_DragDstRow)
$dragDstCol:=AL_GetAreaLongProperty (Self->;ALP_Area_DragDstCol)
$dragSource:=AL_GetArealLongProperty (Self->;ALP_Area_DragSrcArea)

/10 if drag is not from ArealList Pro (or not from same 4D instance)

If ($dragSource#0) //drop from $dragSource Arealist Pro area
$dragSrcRow:=AL_GetArealLongProperty (Self->;ALP_Area_DragSrcRow)
$dragSrcCol:=AL_GetArealLongProperty (Self->;ALP_Area_DragSrcCol)
$dragType:=AL_GetAreaLongProperty ($dragSource;ALP_Area_DragDataType)
$dragDest:=Self->
ARRAY LONGINT(aRows;0)
$error:=AL_GetObjects ($dragSource;ALP_Obiject_Selection;aRows) //get the rows selected by user

If ($dragType=1)
$selectedObject:="Row"

Else
$selectedObject:="Column"
End if

Example 10: Drag and drop between areas

Case of
: ($dragSource=Self->) //drag within the same area
If (Self->=eL.istRight)
evtDragWithin (->aRows;->aCityRight;->aStateRight;$dragDstRow;Self->)
Else
evtDragWithin (->aRows;->aCityLeft;->aStateLeft;$dragDstRow;Self->)
End if
: ($dragSource=eListLeft) //source is left area
evtRowsDragged ($dragSource;->aCityLeft;->aStateLeft;->aCityRight;->aStateRight;$dragDstRow)
vitemLeft:=""
evtUpdateText (->vIitemRight;->aCityRight;->aStateRight)
Else //source is right area
evtRowsDragged ($dragSource;->aCityRight;->aStateRight;->aCityLeft;->aStateLeft;$dragDstRow)
vitemRight:=""
evtUpdateText (->vitemLeft;->aCityLeft;->aStateLeft)
End case
End if

The evtDragWithin project method updates the left or right area after a row(s) drag and drop from itself:
C_POINTER($1) //the rows dragged by user
C_POINTER($2) //-> source city array on itself
C_POINTER($3) //-> source state array on itself
C_LONGINT($4) //destination row
C_LONGINT($5) //area reference
C_LONGINT($error;$i;$x)
ARRAY TEXT($tmpText_1;0)
ARRAY TEXT($tmpText_2;0)
ARRAY LONGINT(aRowsToSelect;Size of array($1->)) //select dragged rows once moved
For ($i;1;Size of array($2->)+1) //all rows in the area + 1 in case drop is below the last row
If ($i=$4) //position where to insert the dragged row(s)
For ($x;1;Size of array($1->)) //selected (dragged) rows
APPEND TO ARRAY ($tmpText_1;$2->{$1->{$x}}) //add city
APPEND TO ARRAY ($tmpText_2;$3->{$1->{$x}}) //and state
aRowsToSelect{$x}:=Size of array($tmpText_1) //this row will be selected
End for
End if
If ($i<=Size of array($2->)) & (Find in array($1->;$i)=-1) //current row is not part of the drag selection
APPEND TO ARRAY ($tmpText_1;$2->{$i}) //add city
APPEND TO ARRAY($tmpText_2;$3->{$i}) //and state
End if
End for
COPY ARRAY($tmpText_1;$2->) //new city array

Tutorial

|60

Example 10: Drag and drop between areas

COPY ARRAY($tmpText_2;$3->) //new state array
AL_SetArealLongProperty ($5;ALP_Area_UpdateData;0) //update destination area

$error:=AL_SetObjects ($5;ALP_Object_Selection;aRowsToSelect) //select new rows

/I no need to update text - selection is unchanged

The evtRowsDragged project method both areas after a row(s) drag and drop between areas:
C_LONGINT($1) //source AreaList Pro area

C_POINTER($2;$3) //-> source city array ; -> source state array

C_POINTER(
C_LONGINT($6) //destination row
C_LONGINT($error)

C_LONGINT(Si)

INSERT IN ARRAY ($4->;$6;Size of array(aRows)) //insert rows at the drop destination row
INSERT IN ARRAY ($5->;%6;Size of array(aRows))

ARRAY LONGINT(aRowsToSelect;Size of array(aRows)) //select dragged rows in destination area

$4;$5) //-> destination city array ; -> destination state array

For ($i;Size of array(aRows);1;-1)
/llook backwards at each row selected by user (aRows populated by event callback)
$4->{$6-1+$i}:=$2->{aRows{$i}} //city
$5->{$6-1+$i}:=$3->{aRows{$i}} //state
DELETE FROM ARRAY ($2->;aRows{$i}) //delete source city
DELETE FROM ARRAY ($3->;aRows{$i}) //delete source state
aRowsToSelect{$i};=$6-1+$i
End for
AL_SetArealLongProperty ($1;ALP_Area UpdateData;0) //update source area (modified array size)

eDestination:=AL_GetAreaLongProperty ($1;ALP_Area_DragDstArea) //destination area

AL_SetArealongProperty (eDestination;ALP_Area UpdateData;0) //update destination area (modified array size)

$error:=AL_SetObjects (eDestination;ALP_Object_Selection;aRowsToSelect) //select new rows

$error:=AL_GetObjects (eDestination;ALP_Object_Selection;aRows) //get the rows for evtUpdateText

Tutorial

Example 10: Drag and drop between areas

|61

Q.

Tutorial

Example 11: Determining a user’s action

The AL_GetLastEvent function lets you find out exactly what actions the user has taken on an ArealList Pro area. This example
demonstrates how to use this useful feature.

The example form contains two Arealist Pro areas and four text variables which will display information about the user’s actions.
It also includes two Popup Drop-down lists to select the Click event report type and the Click type to trigger entry mode:

The user’s actions are monitored through the user of an On Timer event, which is set up in the form method. In the On Load phase
the timer is set to execute every 10 ticks:
Case of
: (Form event=0n Load)
vGlobalEventText:=""

vDraglnfo:=
SET TIMER(10)

Then, in the On Timer form event, the user’s last action is captured by ALP_Area_AlpEvent with areaRef = 0 for all areas and
passed to the AlpEventText method for parsing:

: (Form event=0n Timer)
AlpEventText (AL_GetArealLongProperty (0;ALP_Area_AlpEvent);->vGlobalEventText)

/10 = all areas

End case

The "Click report" Popup sets the click report type through the ALP_Area_SelClick property for both areas, the value being the
selected menu line number minus one:

Case of
: (Form event=0n Clicked)
AL_SetArealLongProperty (elListLeft;ALP_Area_SelClick);ReportEvent_R-1)
AL_SetArealLongProperty (elListRight;ALP_Area_SelClick);ReportEvent_R-1)

End case

Example 11: Determining a user’s action

Q|63

Tutorial

The "Entry mode" Popup sets the entry trigger click type through the ALP_Area_EntryClick property for each area, the value being
the selected menu line number minus one:

Case of
: (Form event=0n Clicked) //we need to set the two areas separately
AL_SetArealLongProperty (elListLeft;ALP_Area_EntryClick);EntryMode_R-1)
AL_SetArealLongProperty (elListRight;ALP_Area_EntryClick);EntryMode_R-1)

End case

The AlpEventText method receives the event code and a pointer to the event text variable, and returns the appropriate response:

C_LONGINT($1) //event code
C_POINTER($2) //to the event description (text)
Case of
: ($1=AL Empty Area Double click)
$2->:="Double-click in an empty part of the area (without displayed data)
: ($1=AL Double click event)
$2->:="Double-click"
: ($1=AL Empty Area Single click)
$2->:="Single-click in an empty part of the area (without displayed data)"

etc.

: ($1=0) //No event, $2-> unchanged

Else

$2->:="Unknown event"

End case
If ($1#0) //add the event code

$2->:=$2->+" ("+String($1)+")"+Char(Carriage return)
End if

Every 10 ticks the user’s last action will be sent to the AlpEventText method for analysis, and if he has done something, this will
be reported in the variables displayed on the form.

The Event callback method EventCallBack11 is a slight variation from EventCallBack10, including a text variable for each area
event, using the received $2 parameter and the same AlpEventText project method as above:

If ($1=eListLeft) //left area
evtUpdateText (->vItemLeft;->aCityLeft;->aStatelLeft)
AlpEventText ($2;->vLeftEventText)
vLeftEventText:=vLeftEventText+vitemLeft

Else //right area
evtUpdateText (->vitemRight;->aCityRight;->aStateRight)
AlpEventText ($2;->vRightEventText)
vRightEventText:=vRightEventText+vitemRight

End if

Example 11: Determining a user’s action

Q.

Tutorial

Example 12: Using Hierarchical Lists

This example illustrates how to display information in a hierarchical list with ArealList Pro.

The form contains an ArealList Pro area and fields to display information about the data:

In the On Load event on the object method for the AreaList Pro area, a set of arrays is created to display the data:
ALL RECORDS([Cities]) //load all records in the Cities table
ORDER BY ([Cities];[Cities]State;>;[Cities]City;>)
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState;[Cities]ld_letter;alLetterld)

[/l copy field values into arrays

Example 12: Using Hierarchical Lists

Q.

Tutorial

The whole presentation is based on hierarchical indentation initiated by the one-dimensional array (displayLevel) that contains the
hierarchical level of each item displayed. Every father has an original level 0 that is incremented by 1 for each son, grandson, etc:

C_TEXT($oldstate;$oldId)
ARRAY LONGINT(displayLevel;0)
For ($i;1;Size of array(aState))
Case of
: ($oldstate#aState{$i})
APPEND TO ARRAY($tmplistArray;aState{$i})
APPEND TO ARRAY(displayLevel;0)
APPEND TO ARRAY($tmplistArray;alLetterld{$i})
APPEND TO ARRAY ((displayLevel;1)
APPEND TO ARRAY ($tmplistArray;aCity{$i})
APPEND TO ARRAY (displayLevel;2)
: ($oldId#aLetterld{$i})
APPEND TO ARRAY ($tmplistArray;alLetterld{$i})
APPEND TO ARRAY (displayLevel;1)
APPEND TO ARRAY ($tmplistArray;aCity{$i})
APPEND TO ARRAY(displayLevel;2)
: ($oldId=aletterld{$i})
APPEND TO ARRAY ($tmplistArray;aCity{$i})
APPEND TO ARRAY (displayLevel;2)
End case
Soldstate:=aState{$i}
$oldld:=al etterld{$i}
End for
COPY ARRAY ($tmplistArray;aState)

Here, we expand the "CA" state content:
ARRAY LONGINT($expanded;Size of array($tmplistArray))
$expanded{17}:=1
$expanded{18}:=1
$expanded{20}:=1
$expanded{23}:=1

Display arrays in the ArealList Pro area:
Serror:=AL_AddColumn (Self->;->aState;0)
$error:=AL_AddColumn (Self->;->displayLevel;0)

Example 12: Using Hierarchical Lists

Q.

Tutorial

Some formatting:
AL_SetColumnTextProperty (Self->;1;ALP_Column_HeaderText;"State/City")
AL_SetColumnTextProperty (Self->;2;ALP_Column_HeaderText;"Level")
AL_SetAreaRealProperty (Self->;ALP_Area_HierIlndent;20) //set hierarchical indentation
DEMO_Default (Self->) //general display settings
AL_SetColumnTextProperty (Self->;3;ALP_Column_Format;"0") //specify Level column format

Set the event callback method:
AL_SetAreaTextProperty (Self->;ALP_Area_CallbackMethOnEvent;"EventCallBack")

Add some variables to the EventCallBack method:
C_LONGINT($0) //object method and form method will not be executed if 0
C_LONGINT($1) //ArealList Pro area
C_LONGINT($2) //AreaList Pro event
C_LONGINT($3) //4D event
C_LONGINT/(
C_LONGINT($5) //last clicked row (or row under the pointer for mouse moved event)
(

$4) /llast clicked column (or column under the pointer for mouse moved event)

C_LONGINT($6) //modifiers

vEvent:=$2

vRow:=$5

vCol:=$4

vRowOver:=AL_GetAreaLongProperty ($1;ALP_Area_RollOverRow)

Now for the important part - tell AreaList Pro that we want to display these arrays in a hierarchical list:
$error:=AL_SetObjects2 (Self->;ALP_Object_Hierarchy;displayLevel;$expanded)

Example 12: Using Hierarchical Lists

Q.

Tutorial

The end result looks something like this:

See the Hierarchical Lists topic for more information.

Example 12: Using Hierarchical Lists

Q.

Tutorial

Example 13: Grids

Grids offer some interesting formatting possibilities tot he developer. Rather than displaying your data in simple rows and columns,
the cells can be organised into groups - for example:

The form holds what looks like a perfectly ordinary Arealist Pro area:

The magic is in the On Load event of the area’s object method...

Example 13: Grids

Q|69

Tutorial

First, create the arrays and add them to the ArealList Pro area:

Compiler //reset the arrays

ALL RECORDS([Cities]) //load all records in the Cities table
ORDER BY ([Cities];[Cities]State;>;[Cities]City;>) //copy field values into arrays
SELECTION TO ARRAY([Cities]City;aCity;[Cities]State;aState;[Cities]CityState;aCityState)
INSERT IN ARRAY (enterprise;1;Size of array(aState))
INSERT IN ARRAY(numRow;1;Size of array(aState))
For ($i;1;Size of array(aState))
numRow{$i}:=$i
enterprise{$i}:=((Random%(2100+%$i))+100)
End for

/I Display arrays in the ArealList Pro area
$error:=AL_AddColumn (Self->;->aState
$error:=AL_AddColumn (Self->;->aState
Serror:=AL_AddColumn (Self->;->aState
$error:=AL_AddColumn (Self->;->aState
$error:=AL_AddColumn (Self->;->aState)

/I Specify the values for the column headers and footers
AL_SetColumnTextProperty (Self->;1;ALP_Column_HeaderText;"State")
AL_SetColumnTextProperty (Self->;2;ALP_Column_HeaderText;"City")
AL_SetColumnTextProperty (Self->;3;ALP_Column_HeaderText;"Enterprise")
AL_SetColumnTextProperty (Self->;4;ALP_Column_HeaderText;"numbering")
AL_SetColumnTextProperty (Self->;5;ALP_Column_HeaderText;"Cities/states")
AL_SetColumnTextProperty (Self->;1;ALP_Column_FooterText;"States")
AL_SetColumnTextProperty (Self->;2;ALP_Column_FooterText;"Cities")
AL_SetColumnTextProperty (Self->;3;ALP_Column_FooterText;"Enterprise")
AL_SetColumnTextProperty (Self->;4;ALP_Column_FooterText;"ID")
AL_SetColumnTextProperty (Self->;5;ALP_Column_FooterText;"City & state")

)
)
)
)

Example 13: Grids

Next, build 2-dimensional arrays for the grid layout:
ARRAY INTEGER($aiGrid;3;8)
For ($i;1;8)

$aiGrid{2}{$i}:=1 //column span

$aiGrid{3K$i}:=1 //row span
End for
$aiGrid{1{1}:=1 //State
$aiGrid{1}42}:=3 //Enterprise
$aiGrid{144}:=2 //City
$aiGrid{116}:=4 //Numbering
$aiGrid{148}:=5 //City - State

We want column 1 (the state) to span 4 lines:
$aiGrid{3K1}:=4 //row span

Tell AreaList Pro how many columns to set in the grid, and add the grid to the area:
AL_SetArealLongProperty (Self->;ALP_Area_ColsInGrid;2) //2 columns in a grid

$error:=AL_SetObjects (Self->;ALP_Object_Grid;$aiGrid) //add the grid arrays to the area

Finally, some formatting is done and the EventCallBack method is set as the event callback projet method.

For a more detailed explanation of how to set up the grid arrays, please see the Grids topic.

Q.

Tutorial

Example 13: Grids

Example 14: Date Formatting Options

Tutorial

This example demonstrates an example of how you can offer a simplified data entry option through the use of callbacks.

It allows the user to speedily enter date information by typing in some numbers; they can enter just one digit, for example, and the

method will complete the date using the current year and month.

For example, if the current date is June 1%t 2011, and the user enters "5", it will complete the date as June 5, 2011.

The third column in the example is an enterable date field:

If you enter a complete date, this will be accepted as-is, as long as it is a valid date. But if you enter a number in one to 8 digits, it

will be converted to a date as shown in the following table. In these examples, the current system date is July 21s, 2011:

o Result
Noér:i'?;g'ts Mapped to E.G. S O us UK
oS (o]
1 D 5 2011/07/05 07/05/2011 05/07/2011
2 DD 31 2011/07/31 07/31/2011 31/07/2011
3 DDM 131 2011/01/13 13/01/2011 01/13/2011
4 DDMM 1301 2011/01/13 13/01/2011 01/13/2011
5 DDMMY 13015 2005/01/13 01/13/2005 13/01/2005
6 DDMMYY 130112 2012/01/13 01/13/2012 13/01/2012
8 DDMMYYYY 13012012 2012/01/13 01/13/2012 13/01/2012

If you enter values directly (double-click in the 3 column in a date cell), and if the value you enter is not in standard date format,

the alpEdit_DateEntry method is called via the ExitEntry callback method.

The callback method is installed in the On Load phase of the ArealList Pro object on the form:

AL_SetAreaTextProperty (Self->;ALP_Area_CallbackMethEntryEnd;"ExitCallbackDate")

The ExitCallbackDate method will be invoked when data entry in a cell in the Date column ends.

After the callback method has done its calculations, the resulting date is poked into the same cell with the command:

$error:=AL_SetAreaPtrProperty (31;ALP_Area_EntryValue;->$date)

Example 14: Date Formatting Options

|71

Example 15: Cell coordinates properties

This example demonstrates the use of all cell coordinates properties:

An entry callback and event callback methods are set:
AL_SetAreaTextProperty (cList;ALP_Area_CallbackMethEntryStart;"EntryCallback15")
// set entry callback to project method EntryCallback15
AL_SetAreaTextProperty (clList;ALP_Area_CallbackMethOnEvent;"EventCallBack15")
/I set event callback to project method EventCallBack15

Q.

Tutorial

Example 15: Cell coordinates properties

Q.

Tutorial

The EntryCallback15 method assigns the Entry coordinates properties values to the matching variables, then updates the layout:
v15EntryCell:=AL_GetAreaTextProperty (elList;ALP_Area_EntryCell)
v15EntryColumn:=AL_GetAreaLongProperty (eList;ALP_Area EntryColumn)
v15EntryGridCell:=AL_GetArealLongProperty (elList;ALP_Area_EntryGridCell)
v15EntryGridCellColFromCell:=AL_GetColumnLongProperty (eList;v15EntryGridCell;ALP_Column_FromCell)
v1EntryPrevCell:=AL_GetAreaTextProperty (eList;ALP_Area_EntryPrevCell)
v15EntryPrevColumn:=AL_GetAreaLongProperty (eList;ALP_Area_EntryPrevColumn)
v15EntryPrevGridCell:=AL_GetAreaLongProperty (eList;ALP_Area_EntryPrevGridCell)
v15EntryPrevGridCellColFromCell:=AL_GetColumnLongProperty (eList;v15EntryPrevGridCell;ALP_Column_FromCell)
v15EntryPrevRow:=AL_GetAreaLongProperty (eList;ALP_Area_EntryPrevRow)

v15EntryRow:=AL_GetArealLongProperty (elList;ALP_Area_EntryRow)
CALL PROCESS(Frontmost process) //update displayed variables

Event callbacks receive the last clicked colum and row (or rollover colum and row for event 18 "mouse moved") in parameters $4
and $5. The EntryCallback15 method assigns them to the "Selected/RollOver col/row (callback)" variables for display:

v15SelColCallback:=$4
v15SelRowCallback:=$5
Example15UpdateVariables

The EntryCallback15 method (also called during On Load) updates the other variables through properties:
v15ClickedCell:=AL_GetAreaLongProperty (eList;ALP_Area_ClickedCell)
v15ClickedCellColFromCell:=AL_GetColumnLongProperty(eList;v15ClickedCell;ALP_Column_FromCell)
v15ClickedCol:=AL_GetAreaLongProperty (eList;ALP_Area_ClickedCol)
v15ClickedRow:=AL_GetAreaLongProperty (cList;ALP_Area_ClickedRow)
v15SelCol:=AL_GetAreaLongProperty (eList;ALP_Area_SelCol)
v15SelRow:=AL_GetArealLongProperty (eList;ALP_Area_SelRow)
v15RollOverCol:=AL_GetAreaLongProperty (eList;ALP_Area_RollOverCol)
v15RollOverRow:=AL_GetAreaLongProperty (eList;ALP_Area RollOverRow)
v15RollOverCell:=AL_GetAreaLongProperty (eList;ALP_Area_RollOverCell)
v15RollOverCellColFromCell:=AL_GetColumnLongProperty(elList;v15RollOverCell;ALP_Column_FromCell)
CALL PROCESS(Frontmost process) //update displayed variables

Example 15: Cell coordinates properties

Q.

Programming The ArealList Pro User Interface

Programming the Arealist Pro
User Interface

Entering Data

Initiating Data Entry

Data entry using typed characters may be initiated in an AreaList Pro cell by three methods:
m User click, single or double, with or without modifiers, or click and hold.
m Return or Tab keys, with or without shift, from the previous or next (shift) enterable cell in the AreaList Pro area.

m Programmatically.

Once typed data entry is initiated, standard editing functions can be performed on the selected cell, including the Edit menu commands
Cut, Copy, Paste, Clear, Select All, and Undo. This is true for cells containing pictures, also (except Select All). However, due to system
limitations, only Edit menu shortcuts will work while editing a cell, but not the menu itself (of which lines will be disabled) except for
picture columns.

Text data being edited will always appear left-justified, regardless of the column’s display justification. The I-Beam pointer can be
dragged across the data in the cell to select a portion or all of the data.

In addition, the ALP_Area_CallbackMethMenu property provides the developer with a complete hook to working with the Edit menu.

Two user click modes

User clicks on a cell can be interpreted in two different ways to trigger entry into a cell:

Click or double-click with optional modifiers

Data entry on a given cell could be initiated upon a single click in that cell, a double-click, or a double-click along with the option/alt,
ctrl/command, shift, or control key. This setting uses the ALP_Area_EntryClick property. If you do not wish to initiate data entry using
this method, set this property to 0:

AL_SetArealLongProperty ($area; ALP_Area_EntryClick; 0)

Setting the area reference to 0 will set the default value for all newly created areas.

Entering Data

Q.

Programming The ArealList Pro User Interface

Click-hold

ArealList Pro also provides the ability to initiate data entry by clicking and holding the mouse button down in the cell where you wish
to perform data entry.

Using this interface, users are still able to select rows and/or enter cells via single-click and double-click.

If you do not wish to initiate data entry using this method, set the ALP_Area_ClickDelay property to 0:
AL_SetArealLongProperty ($area; ALP_Area_ClickDelay; 0)

Otherwise, this property will set the delay (in ticks, i.e. 1/60 seconds) to hold the click before editing begins. Defaut is 30 (half a
second).

Setting this property to -2 will use the system’s double-click time.
Setting the area reference to 0 will set the default value for all newly created areas.

Note: if the user moves the mouse during the click and hold action, AreaList Pro may interpret that as a drag action when
Arealist Pro dragging actions are active.

Summary

The table below summarizes all possible values for ALP_Area_EntryClick and the resulting behaviour for both modes (assuming
that ALP_Area_ClickDelay is non-zero, otherwise click-hold will never trigger entry):

Value Click or double-click with optional modifiers Click-hold

0 no no

1 single click N/A

(click will instantly trigger editing)

2 double click yes
3 command-double click yes
4 shift-double click yes
5 option-double click yes
6 control-double-click yes
7 no yes

Note: the ALP_Area_EntryFirstClickMode property determines how the first click is handled upon beginning entry (when using
numeric, date, time or text entry). See Click action.

Editing 4D fields

Field mode areas allow direct editing of field values. The record will be saved automatically by AreaList Pro upon exiting the cell (if not
disallowed by the “entry finished” callback method).

Editing alpha fields (with limited length in 4D field properties) includes a control that the entered value length does not exceed
the defined field length. Extra characters won’t be accepted. The maximum field length value can be retrieved through the ALP_

Column_Length property.

Entering Data

Q.

Programming The ArealList Pro User Interface

Cell change properties

Entry into an enterable cell can be caused by using the ALP_Area_EntrySkip property from the previous enterable cell.Different
properties can be used to move the cursor to a specific cell.

Either
AL_SetAreaTextProperty ($area; ALP_Area EntryGotoCell; String ($row)+","+String($cell))

or
AL_SetArealLongProperty ($area; ALP_Area_EntryGotoRow; $row)
AL_SetArealLongProperty ($area; ALP_Area_EntryGotoColumn; $column)

or
AL_SetArealLongProperty ($area; ALP_Area_EntryGotoRow; $row)
AL_SetArealLongProperty ($area; ALP_Area_EntryGotoGridCell; $cell)

which is the same as using the first variant with ALP_Area_EntryGotoCell.

Note: ALP_Area_EntryGotoCell and ALP_Area_EntryGotoGridCell expect the cell number in the grid, not the column number.

If you use ArealList Pro in compatibility mode, the columns are physically reordered when moved using Drag & Drop. The cell
number corresponds to the column number. But when you use native AreaList Pro 9 APl mode, the columns are not reordered (or
you defined the grid explicitly) and the cell number is not necessarily the same as the column number.

ALP_Area_EntryGotoColumn (like v8 AL_GotoCell) searches the first cell displaying the requested column.

See the Grid section for more information about grids.

“Undo” value

When data entry is initiated on an ArealList Pro cell, the array contents for the element corresponding to that cell are copied to the
zero element of the same array.

Since this element is usually never used, it makes a convenient storage place for the data in case you wish to revert to the old value;
however, you should take care not to use this zero array element elsewhere in your code while data entry is in progress.

Entering Data

Q.

Programming The ArealList Pro User Interface

Saving field values

If you set the value with 4D for a field that is displayed in an ArealList Pro area, this new value won’t be saved. You must set the
value through ArealList Pro, not 4D. Instead of:

[MyTable]MyField:=$value

use:

AL_SetAreaTextProperty (area;ALP_Area_EntryValue;$value) //set the value

or set the field value as above, but then:
AL_SetArealLongProperty (area;ALP_Area ClearCache;$row) //refresh the row

Do not forget that from AreaList Pro’s side, the area is just editing a record in the [MyTable] table, and when it ends editing, it saves
the edited values into the database.

This means that you should not change or save any record while edited in AreaList Pro. On the other hand, if you change data in
any non-Arealist Pro currently edited table (e.g. related), you obviously have to load, modify and save the record with 4D.

Checkhoxes

Checkboxes can be used to enter and display boolean values.

In addition, the ALP_Column_EntryControl property set to 1 will display checkboxes with title.

There is one (and only one) condition for this setting to be used: when entry is started for a boolean column not displaying
checkboxes (ALP_Column_DisplayControl is -1, formatted values) and ALP_Column_EntryControl is set to 1 (checkbox with title).

In this case, a checkbox control with title is displayed in the cell for entry.

The title is the True label of ALP_Column_Format (or defaults to ALP_Area_DefFmtBoolean if previously set).

Example:

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "Yes;No") //True ; False

AL_SetColumnLongProperty ($area; $column; ALP_Column_DisplayControl; -1) //formatted

AL_SetColumnLongProperty ($area; $column; ALP_Column_EntryControl; 1) //checkbox with title

You can also set up 3-states checkboxes as in 4D:

“Check box objects accept a third state. This third state is an intermediate status, which is generally used for display purposes. It
allows, for example, indicating that a property is present in a selection of objects, but not in each object of the selection.”

(4D Design Reference manual).

In order for a checkbox to take control of this third state in AreaList Pro, you must use a integer or long integer column type (values
are 0, 1, or 2 for the intermediate state) and combine two settings with AL_SetColumnLongProperty:

m ALP_Column_DisplayControl must be setto 0, 1, 2 or 4

m ALP_Column_EntryControl is set to 1

Note: you can use pictures to display your own checkboxes, including three-states.
See Displaying custom checkboxes using pictures from the 4D Picture Library.

Entering Data

Q.

Programming The ArealList Pro User Interface

Bullet “Password” characters

You may want to set a text column to a “password” bullet type display in order to mask the actual characters including while the user
enters text in an edited cell (as with the old 4D "%Password" font).

Set the format of a text column to "+" to display bullets instead of the actual values and to use "+" for password type entry as well:

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "+") //as a string

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; Char(8226)) //as a decimal value
AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; Char(0x2022)) //as hexa

Entering data in ArealList Pro with DisplayList

You can use DisplayList to display a custom selection list for data entry in ArealList Pro.

1. Make the area enterable:
AL_SetArealongProperty ($area;ALP_Area_EntryClick;3) //enterable by cmd-double-click

2. Set a column to allow entry using popup:
AL_SetColumnLongProperty ($area;$column;ALP_Column_Enterable;3) //keyboard & popup

3. Don't set a popup array/menu.

4. Install callback using ALP_Area_CallbackEntryPopup:
AL_SetAreaTextProperty ($area;ALP_Area_CallbackMethPopup;"_Alp_PopupCallback") //entry popup callback

5. Implement the callback:
/I _Alp_PopupCallback
//this function is called when a cell has popup entry allowed, but no popup is defined
C_BOOLEAN($0) //case handled? return False if not handled
C_LONGINT($1) //ALP object reference
C_LONGINT($2) //row
C_LONGINT($3) //column
C_LONGINT($4) //data kind
C_LONGINT($alpEditArea;$alpEditRow;$alpEditCol;$alpDataKind)
C_LONGINT(Serr)
$alpEditArea:=$1
$alpEditRow:=$2
$alpEditCol:=$3
$alpDataKind:=$4

Entering Data

Q.

Programming The ArealList Pro User Interface

Case of
: ($alpDataKind=Is date) //handle date popup - use custom date dialog
C_DATE(vDate;vDate?2)

/IvDate:=DatePicker Display Dialog - We use our own:
$err:=AL_GetAreaPtrProperty ($alpEditArea;ALP_Area_EntryValue;->vDate2)
C_LONGINT($mx;$my;$mb)

GET MOUSE($mx;$my;$mb;*)
$win:=0Open form window("alpDatePicker";Pop up form window;$mx;$my)
DIALOG("alpDatePicker")
CLOSE WINDOW($win)
If (OK=1) //(vDate#!00/00/00!)
$Serr:=AL_SetAreaPtrProperty ($alpEditArea;ALP_Area_EntryValue;->vDate)
End if
$0:=True
: ($alpDataKind=ls time) //handle time popup - not implemented, use default

: ($alpDataKind=ls real) //real column - demo how to use DisplayList

C_REAL($v)

ARRAY REAL($a1;4)

$a1{1}:=1.23

$a1{2}:=12.34

$a1{3}:=123.45

$a1{4}:=1234.56

$v:=AL_GetAreaRealProperty ($alpEditArea;ALP_Area_EntryValue)

$err:=Find in array($a1;$v)

SetListLine ($err)

SetListSize (0;0;3) //SetListSize (200;200;1)

$Serr:=DisplayList ($a1)

If ($err#0)
AL_SetAreaRealProperty ($alpEditArea;ALP_Area_EntryValue;$a1{$err})
[Properties]Property:=String($err)

End if

$0:=True

Else
/Inot handled - use default ("no values")
End case

Here is the result with the Is real case (using DisplayList):

Entering Data

Q.

Programming The ArealList Pro User Interface

Popup entry in specific cells
You can create an interface where some cells in a column have a popup icon while others do not.

1. Make the area enterable.

AL_SetArealLongProperty ($area;ALP_Area_EntryClick;3) //enterable by cmd-double-click

2. Make the columns enterable. Those which should display popups must be “enterable by popup” (could be with keyboard, too).
//all columns enterable with keyboard only:

AL_SetColumnLongProperty ($area; -2; ALP_Column_Enterable; AL Column entry typed only)

/I $column enterable by popup only:

AL_SetColumnLongProperty ($area; $column1; ALP_Column_Enterable; AL Column entry popup only)

// $column2 enterable by popup only:
AL_SetColumnLongProperty ($area; $column2; ALP_Column_Enterable; AL Column entry popup only)

3. Make some cells not enterable based on the value.
For ($row; 1; Size of array (myArray))
If (myArray{$row} # "@chair@")
AL_SetCellLongProperty ($area; $row; $column1; ALP_Cell Enterable; 0)
End if
If (myArray{$row} # "@table@")
AL_SetCellLongProperty ($area; $row; $column2; ALP_Cell Enterable; 0)
End if
End for

Default for enterability of a cell is -1, which means “inherit the column's enterability”.

The cell enterability property (ALP_Cell_Enterable) can be set to -1 or to any value allowed for column enterability (ALP_Column_
Enterable).

m When the column is set to be enterable by popup, but a cell is not enterable by popup (0=no entry, 1 =keyboard only), the popup
icon is not displayed in the cell, but space is reserved for it.

m Conversely, when the column is not set to be enterable by popup, the space for the icon is not reserved (and the icon is not
drawn) even if the cell is set to be enterable by popup.

Leaving a Cell

Leaving a cell can be triggered by three methods:

m User click on another part of the ArealList Pro area (not on a non focusable 4D object or another window from any application as
of version 9.9). The entry will also be ended when a non focusable object is clicked and ALP_Area_lgnoreSoftDeselect is set to
true (see the explanation about Soft deselect).

m Return or Tab keys, with or without shift, to the next or previous (shift) enterable cell in the AreaList Pro area (note that the Enter
key can be mapped to Return or Tab according to the ALP_Area_EntryMapEnter property).

m Programmatically.

Entering Data

Q.

Programming The ArealList Pro User Interface

Events

In many situations you will want to know what the user did: which cell they edited; which row they dragged; and so on. You can get
this information by calling the AL_GetArealLongProperty command with the ALP_Area_AlpEvent option.

For example, to find out how many columns the user sorted on after opening the ArealL.ist Pro Sort Editor, you can use the following
code in the area’s object method:

$event:=AL_GetAreaLongProperty (Self->;ALP_Area AlpEvent)
Case of
: ($event=AL Sort editor event)
$sorted:=AL_GetAreaTextProperty (Self->;ALP_Area_SortList) //gets list of sorted column numbers

$sortcount:=AL_GetAreaLongProperty (Self->;ALP_Area_Sort) //how many columns were sorted?

End case

You can find a complete list of event codes and their meanings in the AreaList Pro Event codes section.

Sorting

Areas can be sorted either by clicking in a column header or by invoking the ArealList Pro sort editor. If the user clicks in a column
header, the area is sorted in ascending order on that column; if he clicks again, the column will be sorted in descending order.

If he wants to sort on more than one column, he can use the sort editor.

The developer can control many aspects of sorting, including disabling the sort option entirely and “hijacking” the user sort if he
wants to handle it in a certain way.

When a column has been sorted, a triangle (sort indicator) appears in the header:

Ascending Order Sort Descending Order Sort

When both ALP_Area_HeaderMode and ALP_Area_ShowSortIndicator properties are not zero, the v8 sort order button is displayed
above the vertical scrollbar:

On Windows Vista, 7 and above, value 2 to ALP_Area_ShowSortindicator draws the sort (non native) triangle to the right, not on top.

Events - Sorting

Q.

Programming The ArealList Pro User Interface

The Sort Editor

If you want your users to be able to use the sort editor, you must first enable it by calling AL_SetArealLongProperty with the
ALP_Area_ AllowSortEditor option - for example:

AL_SetArealLongProperty (area;ALP_Area_AllowSortEditor;1)

To activate the Sort Editor, the user cmd-clicks in the column header. The Sort Editor window then opens:

(N

To add a column to the sort list, double-click it, drag and drop it into the right-hand area, or select it and click the right arrow.

After the user has completed a sort, you can find out which columns were sorted by calling the ALP_Area_SortList option of AL_
GetAreaTextProperty - for example:
$event:=AL_GetArealLongProperty (Self->;ALP_Area_AlpEvent)

Case of

: ($event=AL Sort editor event)
$sorted:=AL_GetAreaTextProperty (Self->;ALP_Area_SortList)

End case

$sorted now contains a comma-separated list of the columns that the user sorted. If a negative number is shown, that column was
sorted in descending order.

Button labels

The ALP_Area_SortOK and ALP_Area_SortCancel properties can be used to override the default values for the “Sort” and “Cancel”
buttons. It either one of these is empty (not set) then AreaList Pro will load the button labels from the “ALP.xIf” file located in the
localized subfolder of the Resources folder in the AreaList Pro bundle (depending on the languages available as XLF).

See Areal.ist Pro Area Sort Properties in the Properties by Theme section.

Sorting

Programming The ArealList Pro User Interface

Taking control of the Sort

It is possible for the developer to “hijack” a user sort and take control of it. Why would you want to do that? Here’s an example:
In your ArealList Pro area you have First Name and Last Name columns. If a user clicks on the Last Name column header, you
want to sort the area by Last name and First Name. We place the following code in the AreaList Pro object’s method:
$event:=AL_GetAreaLongProperty (Self->;ALP_Area_ AlpEvent)
Case of

: ($event=AL Sort button event) //user clicked a column header

$selected:=AL_GetAreaLongProperty (Self->;ALP_Area_ SortColumn) //which column?

Case of
. ($selected=2) //last name
$sort:="2,1" //sort on Last name, First name
AL_SetAreaTextProperty (Self->;ALP_Area_SortList;$sort)

Else
$sort:=String($selected)
AL_SetAreaTextProperty (Self->;ALP_Area_SortList;$sort) //sort on the user’s column

End case

End case

Note: ALP_Area_Sort_Column is always the column number (does not contain the sort direction). Use ALP_Area_Sort_List if
you want to know the direction.

Setting the sort indicator and sorted column list

You can indicate yourself the sorted column(s) by using either ALP_Area_SortListNS or ALP_Object_SortListNS (asking AreaList
Pro to set the sorted columns without doing the actual sort):

AL_SetAreaTextProperty($area;ALP_Area SortListNS;"-1,2")
AL_SetObjects($area;ALP_Object SortListNS;$sortArray)

Note: NS in the constant name stands for “No Sort”.

Bypassing the Sort editor

Using 4D code
You may want to sort the arrays on multiple criteria via code and not using ArealList Pro sort features.

You can sort the arrays manually and then tell AreaList Pro how it is sorted using MULTI SORT ARRAY and:
Serr:=AL_SetObjects ($area;ALP_Object_SortListNS;$arraysSortOrder).

This is the same as using v8 AL_SetSortedCols.

Or you can use AL_SetAreaTextProperty:
AL_SetAreaTextProperty ($area;ALP _Area SortListNS;$sortList).

Sorting

|83

Q.

Programming The ArealList Pro User Interface

Using Arealist Pro

You can directly tell AreaList Pro how to sort using:
$err:=AL_SetObjects ($area;ALP_Object_SortList;$arraysSortOrder).

This is the same as using v8 AL_SetSort.

Alternatively you can use AL_SetAreaTextProperty:
ARRAY INTEGER ($arraysSortOrder;4)
$arraysSortOrder{1}:=-7 //descending on column 7
$arraysSortOrder{2}:=5 //ascending on column 5
$arraysSortOrder{3}:=1
$arraysSortOrder{4}:=-14
$sortList:="-7,5,1,-14"
AL_SetAreaTextProperty ($area;ALP Area SortList;$sortList)

Here is an example where a click on column 7 (visible) will actually trigger a sort on column 8 (invisible) yet show the indicator in
the clicked column (including the sort direction).

When you set the sort list, AreaList Pro simply uses what you provided (as long as the column numbers are in the range). If the first
column to be sorted on is hidden, no visible column will be shown as the sort column.

When you sort the arrays yourself, you just need to tell AreaList Pro that it must reload them.

But when you sort using AreaList Pro, you have to specify which column to mark as the sort column:
/l handle a click into a column header when sorting is set to be bypassed
If ((AL_GetAreaLongProperty ($area;ALP_Area_AlpEvent)=AL Sort button event)\
& (AL_GetArealLongProperty ($area;ALP_Area UserSort)=AL User sort bypass))
$sort:=AL_GetAreaLongProperty ($area;ALP_Area_SortList)

Case of

: ($sort=7) // 7th column ascending
AL_SetAreaLongProperty ($area;ALP_Area_SortList;8) // sort on column 8 ascending
AL_SetAreaLongProperty ($area;ALP_Area_SortListNS;7) // but highlight column 7 header
: ($sort=-7) // 7th column descending

AL_SetArealLongProperty ($area;ALP_Area_ SortList;-8) // sort on column 8 descending
AL_SetArealLongProperty ($area;ALP_Area_SortListNS;-7) // but highlight column 7 header

Else

AL_SetArealLongProperty ($area;ALP_Area_SortList;$sort) // sort the clicked column

End case
End if

Sorting

Programming The ArealList Pro User Interface

Internal Sorting

When you are displaying arrays, the default behaviour is for arrays to be physically sorted. However, you can turn physical sorting
off using the ALP_Area_DontSortArrays property - for example:

AL_SetArealLongProperty (area; ALP_Area_DontSortArrays;1)

This is required (it is set internally) when displaying a hierarchy (the hierarchy can be sorted).

When ALP_Area_DontSortArrays is on:

When the user clicks a row, the real row number in your arrays is reported - independently from the position on-screen:

c— 1
B— 2
A—3
D—4

A click on “A” will report 3 as the clicked row

If the data is sorted on the first column, the user will see:

A—3
B—2
c—1
D— 4

A click on “A” will report 3 as the clicked row (and because the arrays are untouched, the third element is “A”).

You can request the internal sort order as follows:
ARRAY LONGINT($alndex;0)
Serr:=AL_GetObjects (area;ALP_Area_Sort;$alndex)
You will get 3, 2, 1, 4 in $alndex.

In other words, if internal sorting is on, arrays are not sorted - the row order is sorted internally by AreaList Pro. If internal sorting
is off, the arrays are all sorted.

Why might you want to turn internal sorting on?
Because it will give improved performance.
For example, let’'s suppose you have 40 parallel arrays, and the user is presented with just 3 of those arrays.

But because it can be sorted, you have to add the rest of the arrays as invisible, and ArealList Pro has to sort (physically move all
data in) all 40 arrays.

You don’t have to add all the arrays; you can add just one index array and access all the other arrays indirectly.
When you use this feature, you only have to add the 3 displayed arrays - the order of the arrays will not change.

ArealList Pro will sort only the internal index array.

Note: when a hierarchical list is shown, internal sorting is always turned on when a sort is performed.

Sorting

Q.

Programming The ArealList Pro User Interface

Calculated columns

Calculated columns are not sortable (a click in header is ignored) if you don’t bypass the internal sorting.

In this case, you can get the clicked column, sort the selection and then set the actual sort order. And yes, setting a calculated
column as a sorted column is allowed.

Use ALP_Area_SortListNS to mark the column as sorted and display the sort indicator in the header.

Your code might look like this:
: (Form event=0n Plug in Area)
$event:=AL_GetArealLongProperty (Self->;ALP_Area_AlpEvent)
If ($event=AL Sort button event)

If (AL_GetAreaLongProperty (Self->;ALP_Area_ClickedCol)=2) //Column to sort is 2
AL_SetArealLongProperty (Self->;ALP_Area_ClearCache;-2) //Update all rows
$colToSort:=AL_GetAreaLongProperty (Self->;ALP_Area_SortList)

If (Abs($colToSort)=$clickedCol)
$colToSort:=-$colToSort
Else
$colToSort:=2
End if
AL_SetArealLongProperty (Self->;ALP_Area_SortListNS;$colToSort)
If ($colToSort>0)
ORDER BY([Order];[Order]FieldToSortOn;>)
Else
ORDER BY([Order];[Order]FieldToSortOn;<)
End if
End if
End if

Here is another way: make ArealList Pro to bypass the internal sorting by setting ALP_Area_UserSort to AL User sort bypass.
AL_SetArealLongProperty (Self->;ALP_Area_UserSort;AL User sort bypass)

In this case, calculated columns are allowed (the click in header is not ignored), but you must handle all the sorting yourself.

When you get the AL Sort button event, ask for the clicked column including sort direction:
$colToSort:=AL_GetAreaLongProperty (Self->;ALP_Area_SortList)

then handle the sorting - but for all columns, not just for the calculated column(s).

Sorting

Q.

Programming The ArealList Pro User Interface

Comma-separated list vs array

If you don't like the idea of a comma-separated list of sort columns, you can use an array of sort columns. In some cases parsing a
sort to comma separated values is more complex than parsing to an array.

ARRAY INTEGER($aiSortList;0)

Serr:=AL_GetObjects($area;ALP_Object SortList;$aiSortList) //get order

ARRAY LONGINT($alSortList;2)

$aiSortList{1}:=-4

$aiSortList{2}:=7

Serr:=AL_SetObjects($area;ALP_Object SortList;$aiSortList) //set order, sort data

If your columns data are already sorted, you can use:
$err:=AL_SetObjects($area;ALP_Object SortListNS;$aiSortList) //set order, don’t sort data

Restoring highlighted selection

If you want ArealList Pro (or a given area) to always restore the highlighted selection after a sort in field mode, set the ALP_Area_
SelPreserve property to true. Otherwise, the ALP_Object RowSelection property is the way to perform an action in AreaList Pro
similar to 4D’s GET HIGHLIGHTED RECORDS, then HIGHLIGHT RECORDS.

ArealList Pro uses 4D record IDs though, not UserSet or any other set as 4D does.
/I Get the currently selected record numbers from the user’s row selection
ARRAY LONGINT($records;0)
$err=AL_GetObjects ($area;ALP_Object_RowSelection;$records)
/I Sort your 4D selection
ORDER BY([Table];[Table]Field1;>;[Table]Field2;<)
/lInform user how the selection is ordered
AL_SetAreaTextProperty ($area;ALP_Area_SortListNS;"1;-3") //ordered by first and third columns
/ (alternate method) the line above is the same as using an array with sort order information:
ARRAY LONGINT($order;2)

$order{1}:=1 //first column, ascending

$order{2}:=-3 //third column, descending
AL_SetObjects ($area;ALP_Object_SortListNS;$order)
// (end of alternate method)

/lInform ArealList Pro of 4D’s selection change (clear the cache, fetch data)
AL_SetArealLongProperty ($area;ALP_Area UpdateData;0)

If (Size of array($records)>0) //will also work if this test is omitted

//Restore the user’s row selection using record numbers
Serr:=AL_SetObjects ($area;ALP_Object RowSelection;$records)

/I Make the selected record visible

AL_SetRowLongProperty ($arca;AL_GetAreaLongProperty ($area;ALP_Area_SelRow);ALP_Row_Reveal;0)
End if

Sorting

Q.

Programming The ArealList Pro User Interface

Typeahead

When at least one column is sorted the user can type one or several characters to scroll the list to the desired value in the sorted
column. This “typeahead” is available both in array and field modes (set the ALP_Area_TypeAheadFieldMode property to true in
order to enable typeahead in field mode).

The behavior depends on the ALP_Area_TypeAheadEffect property:
Value Behavior

-2 report AL Typeahead event (no search)
-1 ignore typeahead (do nothing)

0 select first matching row (value >= "search")

1 select first matching row if selection is empty and scroll view to show first matching row otherwise (legacy behavior, no
event reported)

2 change the selection to matching rows (value = "search@") — selection will be empty if no matching value is found

Note: at least one column must be sorted (only the first sorted column will be considered).

Set ALP_Area_TypeAheadEffect to 1 to get the old AreaList Pro v8 behavior: on typeahead, the selection is not changed when
selection mode is multiple rows selection and the current selection is not empty — only the view is scrolled to show the first matching
row.

AL Typeahead event is available with ALP_Area_TypeAheadEffect = -2. Nothing else happens with this setting, besides updating
ALP_Area_TypeAheadString. It is also available with O or 2.

No event is reported when ALP_Area_TypeAheadEffect = -1 (ignore) or 1 (legacy mode for backward compatibility).

ALP_Area_TypeAheadString contains the string that was typed within twice the OS-set double-click time (this value can be modified
using the ALP_Area_TypeAheadTime property). This is true in both array and field modes, unless ALP_Area_TypeAheadEffect.= -1.

Values 0 (default) and above perform a search:

m In field mode, the query is executed after the timeout (ALP_Area_TypeAheadTime).

m In array mode, the query is executed immediately after each keystroke.
m The query is performed within the sorted column adding a “@" to the string.

m Attributed "styled" text is supported (the query uses AL_GetPlainText in this case).

Note: when typehead is activated in field mode, the query used is QUERY SELECTION when possible (plain text/alpha field),
QUERY SELECTION BY FORMULA otherwise.

See the demonstration database (ArealList > Configuration options...).

Typeahead

http://www.e-node.net/ftp/AreaListPro/

Q.

Programming The ArealList Pro User Interface

Text wrapping

Wrapping text in a cell means that long lines will be split (on word boundary if possible, in a middle of a word otherwise) and will
continue on the next line if possible.

Note: when word wrapping is enabled and a word does not fit into a column width, the word is split (e.g. “TEXT” can be split into
“TE” + “XT” on next line).

This text is too long to fit into the cell:

‘This text is too long to I"‘

We could set the ALP_Area_UseEllipsis property on to indicate the overflow:

|This text is too long t |

Or we can set wrapping on so that the text fits on several lines:

Note: regardless of the wrapping mode, text is always split on CR or LF and will continue on next line if possible. In other words
explicit line breaks are always honored, even with wrapping off.

The ALP_Area_NumXXXLines properties must be used if you want the wrapped text to be displayed on several lines:

m ALP_Area_NumHdrLines (column header)

m ALP_Area_NumRowLines (column rows)

m ALP_Area_NumFtrLines (column footer)

Compatibility mode on

In compatibility mode (ALP_Area_Compatibility set to 1) wrapping will occur whenever the ALP_Area_NumXXXLines value is
different than 1 (=0 or > 1).

Note: calling either old AL_SetRowOpts or AL_SetColOpts will set the compatibility mode on.

Compatibility mode off

The relevant wrapping properties must also be set when ALP_Area_Compatibility is set to O:

m ALP_Column_HdrWrap (column header)

m ALP_Column_Wrap (column rows)

AL_SetColumnLongProperty ($elist;4;ALP_Column_Wrap;1) //wrap long lines in column 4

m ALP_Column_FtrWrap (column footer)

m ALP_Row_ Wrap (individual row, supersedes column wrapping setting if any)

m ALP_Cell_Wrap (individual cell, supersedes column and row wrapping setting if any)

Text wrapping

Q.

Programming The ArealList Pro User Interface

For example, if you are setting the ALP_Column_Wrap property and if you want to use variable row height:

Note: ALP_XXX_Wrap properties are ignored in compatibility mode.

AL_SetArealLongProperty ($eList;ALP_Area_NumRowLines;0) //variable row height
AL_SetColumnLongProperty ($elList;4;ALP_Column_CalcHeight;1)

//the above line is meant to calculate each row/header/footer height using this column’s data

Text Styling

Arealist Pro gives you many options for styling text within the following objects:

cells

columns
column footers
column headers

rows

You can set the following attributes:

font

font size

font style (bold, italic, underline)
uppercase

rotation

color

wrapping (see above)
alignment

horizontal scaling

line spacing

baseline shift
dynamic row height

automatic text truncation (ellipsis)

Text Styling

Programming The ArealList Pro User Interface

The following tables describe which properties you can use to style text in the various objects.

Area properties

Use these properties with commands in the Area theme:

|91

Constant Get Set Per Type Default Min Max Comments
ALP_Area_EntryAllowReturn 4 v v bool false (0) Allow RETURN in text
ALP_Area_EntryHighlight 4 v range Entry highlight in the form:

String ($startOfSelection)+","

+String ($endOfSelection)
ALP_Area_EntryHighlightE 4 v long int Entry highlight end
ALP_Area_EntryHighlightS 4 v long int Entry highlight start
ALP_Area_EntryMapEnter 4 v v longint 0 0 3 Map Enter key to:

0 = nothing (ignore)

1=Tab

2 = Return

3 = Return for text fields, Tab otherwise
ALP_Area_EntrySelectedText v v text Selected text (entry must be in progress)
ALP_Area_EntryText v v text Entry text (entry must be in progress)
ALP_Area_Ftrindent 4 v v point 3;2 Horizontal and vertical indents for the footer rows

in points

The first value represents the horizontal indent

(left and right) and the second value is the

vertical indent (top and bottom)
ALP_Area_FtrindentH v v v real 3 0 64 Horizontal indent for the footer rows, in points
ALP_Area_FtrindentV 4 v v real 2 0 64 Vertical indent for the footer rows, in points
ALP_Area_Hdrindent 4 v v point 3;2 Horizontal and vertical indents for the header

rows in points

The first value represents the horizontal indent

(left and right) and the second value is the

vertical indent (top and bottom)
ALP_Area_HdrindentH 4 4 4 real 3 0 64 Horizontal indent for the header rows, in points
ALP_Area_HdrindentV 4 v v real 2 0 64 Vertical indent for the header rows, in points
ALP_Area_Hierlndent 4 v v real 16 0 64 Indent increment for every hierarchy level (for

use with hierarchical lists)
ALP_Area_RowlIndent v v v point 3;1 Horizontal and vertical indents in points

The first value represents the horizontal indent

(left and right) and the second value is the

vertical indent (top and bottom)
ALP_Area_RowlIndentH v v v real 3 0 64 Horizontal indent for the rows, in points
ALP_Area_RowlIndentV v v v real 1 0 64 Vertical indent for the rows, in points
ALP_Area_UsetEllipsis 4 4 4 longint O 0 2 ArealList Pro will automatically truncate data and

display the standard ellipsis (...) when columns are
resized smaller than the displayed data:

0 =none
1 = trailing for left aligned text, center otherwise

2 = trailing for left aligned text, leading for right
aligned text, center otherwise

Text Styling

a|92

Programming The ArealList Pro User Interface

Constant Get Set Per Type Default Min Max Comments

ALP_Area_WindowsText v v bool false (0) 1 = change the engine used for drawing on
Windows to GDI drawing (ignored on Mac)

0 (default) = use GDI+

GDI: better rendering, no transparency, no
horizontal scaling, limited text rotation
features

GDI+: allows the three features above, but may
affect precise rendering on Windows

Can be used with existing areas to dynamically

switch the drawing engine used on Windows

May be used with the area reference set to zero
(newly created areas will use this mode)

Column Properties

Use these properties with commands in the Columns theme:

Constant Get Set Per Type Default Min Max Comments

ALP_Column_Attributed 4 v v bool false (0) Use attributed (multi-style) text:
0=no, 1=yes
See also ArealList Pro Text Style Tags

ALP_Column_FooterText 4 4 4 text Footer text
ALP_Column_HeaderText v v v text Header text
ALP_Column_Length v long int Size of the alpha 4D field
Zero means it is not an alpha (length-limited) field
ALP_Column_Uppercase 4 v 4 bool Make uppercase
ALP_Column_HdrFontName 4 v 4 text Verdana on Header font name
Windows
Lucida
Grande on
MacOS
ALP_Column_HdrHorAlign 4 v v longint 0O 0 5 Header horizontal alignment:
0 = default
1= left
2 = center
3 =right
4 = justify
5 = full justify
ALP_Column_ 4 v v real 1 0,1 100 Header horizontal scale
HdrHorizontalScale
ALP_Column_HdrRotation 4 v v real 0 -360 360 Rotation of text in header
ALP_Column_HdrSize 4 v v real 12 on 4 128 Header font size
Windows
13 on
MacOS
ALP_Column_HdrStyleB 4 v v bool false (0) Header font style = bold
ALP_Column_HdrStyleF 4 4 4 longint O 0 7 Header font style, using 4D style constants (e.g.
Bold, ltalic, etc.)
ALP_Column_HdrStylel v v v bool false (0) Header font style = italic

Text Styling

Programming The ArealList Pro User Interface

|93

Constant Get Set Per Type Default Min Max Comments
ALP_Column_HdrStyleU v v v bool false (0) Header font style = underlined
ALP_Column_HdrTextColor v v v color #FF000000 Header font color
Default is black
ALP_Column_HdrVertAlign 4 v v long 2 0 3 Header vertical alignment:
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_HdrWrap 4 v v bool false (0) Wrap long lines in header
ALP_Column_FtrBaseLineShift 4 v v real 0 -100 256 Footer baseline shift
ALP_Column_FtrFontName 4 v 4 text Verdana on Footer font name
Windows
Lucida
Grande on
MacOS
ALP_Column_FtrHorAlign v v v longint 0O 0 5 Footer horizontal alignment:
0 = default
1= left
2 = center
3 =right
4 = justify
5 = full justify
ALP_Column_FtrHorizontalScale v 4 real 1 0,1 100 Footer horizontal scale
ALP_Column_FtrRotation 4 v 4 real 0 -360 360 Rotation of text in footer
ALP_Column_FtrSize v v v real 12 on 4 128 Footer font size
Windows
13 on
MacOS
ALP_Column_FtrStyleB 4 v v bool false (0) Footer font style = bold
ALP_Column_FtrStyleF 4 v v longint 0O 0 7 Footer font style, using 4D style constants (e.g.
Bold, ltalic, etc.)
ALP_Column_FtrStylel 4 v v bool false (0) Footer font style = italic
ALP_Column_FtrStyleU v v v bool false (0) Footer font style = underlined
ALP_Column_FtrTextColor v v v color #FF000000 Footer font color
Default is black
ALP_Column_FtrVertAlign 4 v v long 2 0 3 Footer vertical alignment:
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_FtrWrap 4 v v bool false (0) Wrap long lines in footer
ALP_Column_FontName v v v text Verdana on List font name
Windows
Lucida
Grande on
MacOS

Text Styling

a|94

Programming The ArealList Pro User Interface

Constant Get Set Per Type Default Min Max Comments
ALP_Column_HorAlign v v v longint 0O 0 5 List horizontal alignment:
0 = default
1= left
2 = center
3 =right
4 = justify
5 = full justify
ALP_Column_HorizontalScale 4 v 4 real 1 0,1 100 List horizontal scale
ALP_Column_Rotation 4 v v real 0 -360 360 Rotation of text in list
ALP_Column_Size v v v real 12 on 4 128 List font size
Windows
13 on
MacOS
ALP_Column_StyleB v v v bool false (0) List font style = bold
ALP_Column_StyleF 4 v v long 0 0 7 List font style, using 4D style constants (e.g.
int Bold, ltalic, etc.)
ALP_Column_Stylel v v v bool false (0) List font style = italic
ALP_Column_StyleU 4 v v bool false (0) List font style = underlined
ALP_Column_TextColor v v v color #FF000000 List font color
Default is black
ALP_Column_VertAlign v v v long 0 0 3 List vertical alignment
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_Wrap 4 v v bool false (0) Wrap long lines in list

Row Properties

Use these properties with commands in the Rows theme:

Constant Get Set Per Type Default Min Max Comments
ALP_Row_BaseLineShift v v v real -100 256 Baseline shift
ALP_Row_ClearStyle v n/a Clear the style of this row

The area redraws automatically
ALP_Row_FontName 4 v 4 text Font name
ALP_Row_HorAlign v v v long int 0 5 Horizontal alignment:

0 = default

1= left

2 = center

3 =right

4 = justify

5 = full justify
ALP_Row_HorizontalScale v 4 v real 0,1 100 Horizontal scale
ALP_Row_Rotation v v v real -360 360 Rotation of text
ALP_Row_Size v v v real 4 128 Font size
ALP_Row_StyleB 4 v v bool Font style = bold

Text Styling

Constant

Get

Set

Per

Default Min Max

Type

Programming The ArealList Pro User Interface

Comments

|95

ALP_Row_StyleF

long int 0 7

Font style, using 4D style constants (e.g. Bold,
Italic, etc.)

ALP_Row_Stylel

bool

Font style = italic

ALP_Row_StyleU

bool

Font style = underlined

ALP_Row_TextColor

color

Font color

ALP_Row_VertAlign

AU NI NU IR N B N

AN N R N

A NI R N

long int 0 3

Vertical alignment:
0 = default

1=top

2 = center

3 = bottom

ALP_Row_Wrap

bool

Wrap long lines

Cell Properties

Use these properties with commands in the Cells theme:

Constant

Get

Set

Per

Type Default Min Max

Comments

ALP_Cell_BaseLineShift

v v Vv

real -100 256

Baseline shift

ALP_Cell_ClearStyle

v

n/a

Clear the style of this cell
The area redraws automatically

ALP_Cell_Flags

long int

Bit-mask of set features Properties not set are
inherited from the row settings, then the column
settings

The following flags indicate what style options
have been set at the cell level:
2 = font name
4 = font size
8 = font style
16 = text color
32 = background color
64 = horizontal alignment
128 = vertical alignment
256 = wrap
512 = rotation
1024 = baseline shift
2048 = horizontal scale
4096 = line spacing
Maintained by ArealList Pro and should not
normally be changed

You can clear the flag if you want to force
ArealList Pro to abandon cell-specific settings

ALP_Cell_FontName

AN

AN

AN

text

Font name

ALP_Cell_HorAlign

long int 0 5

Horizontal alignment:
0 = default

1= left

2 = center

3 =right

4 = justify

5 = full justify

ALP_Cell_HorizontalScale

real 0,1 100

Horizontal scale

ALP_Cell_Rotation

AN

<

AN

real -360 360

Rotation of text

ALP_Cell_Size

real 4 128

Font size

Text Styling

Programming The ArealList Pro User Interface

|96

Constant Get Set Per Type Default Min Comments
ALP_Cell_StyleB v 4 v bool Font style = bold
ALP_Cell_StyleF 4 v v long int 0 Font style, using 4D style constants (e.g. Bold,

Italic, etc.)
ALP_Cell_Stylel v 4 v bool Font style = italic
ALP_Cell_StyleU 4 v v bool Font style = underlined
ALP_Cell_TextColor 4 v v color Font color
ALP_Cell_VertAlign (4 v v long int 0 Vertical alignment:

0 = default

1=top

2 = center

3 = bottom
ALP_Cell_Wrap 4 v 4 bool Wrap long lines

Object Properties

Use these properties with commands in the Objects theme:

Constant Get Set Array Type Comments

ALP_Object_FooterText v v text Footer text of all columns
ALP_Object_FooterTextNH v text Footer text of visible columns in grid order
ALP_Object_HeaderText v (4 text Header text of all columns
ALP_Object_HeaderTextNH v text Header text of visible columns

Formatting

Column property

The format for a given column is set by the ALP_Column_Format column property.

In addition you can use the Advanced properties dialog, and of course the area's XML description.

Custom styles

4D's custom styles are identified by the "OR" sign used as a prefix

"|format name" type parameters will be interpreted by Areallist Pro for the column display, whether set from advanced properties,

XML or the ALP_Column_Format property:

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "|format")

Note: text type formats will only access the styles available in the host database, not components.

Text Styling - Formatting

Q.

Programming The ArealList Pro User Interface

Empty string for null dates

Since 4D formats for dates are numbers and the ArealList Pro format a column text property, the date format number must be passed
as as string:

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "107")

The 4D layout editor has a display property for dates “Empty if null”. This avoids the display of empty dates as "00/00/00". This
property can be set with 4D code using the String command, by adding 100 (Blank if null date) to the date format number, e.g. "107"
= String (Blank if null date | Internal date short). AreaList Pro will honor these settings.

In addition, there is a special AreaList Pro format: "xxx-" (xxx is the format, e.g. "7" becomes "7-").

The trailing minus sign "-" means “use empty string for null date”. The following line will do exactly the same as the above example:

AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "7-")

Using the debugger

Trace mode

When the ALP_Area_TraceOnError property’s bit 0 is set to true in interpreted mode (the default), if there is an error in a command
that does not return an error code, and you are using 4D in interpreted mode, the 4D debugger window will automatically open with
the line immediately following the problem line highlighted:

(M

In this example, the command is invalid (5=ALP_Err_InvalidRequest, see Error codes).

Zero as column number is used to set default style properties for newly created columns, but enterability is not a property of a style.
The correct call (commented out next line) is:

AL_SetColumnLongProperty (ArealistEnt;-2;ALP_Column_Enterable;1)

//-2 = update all existing columns

Formatting - Using the debugger

Programming The ArealList Pro User Interface

Getting the last error

The error is retrieved through the ALP_Area_LastError property, which is global to all AreaList Pro areas.

This last error can be displayed in the debugger window using either one of the following:
AL_GetAreaLongProperty (0;ALP_Area_LastError) //full syntax
AL_GetArealLongProperty (0) //shortened syntax

AL_GetArealLongProperty //short syntax

Always use the full syntax in your code if you want to test the error programmatically.

The short syntax provides a convenient and quick way to type into the debugger window and get the error code.

Compiled mode

In compiled mode, if ALP_Area_TraceOnError property’s bit 1 is set to true an alert is displayed with the error code, the ArealList Pro
command, the calling 4D method and the property used (selector, see Property Values, Constants and XML Names):

Read-only mode

With AreaList Pro v9.9.1 and above, an area can be made partially or completely read-only. This is achieved using the ALP_Area_
ReadOnly property, which is a combination of bits:

Bit Effect

0 Make area not enterable

1 Make area not droppable (ignore drag)
2 Make area not draggable

For example, we want to prohibit drag and drop from and to this area, regardless of any drag and drop settings:
AL_SetArealLongProperty ($eList;ALP_Area_ReadOnly;6) //bits 1 and 2 on

Using the debugger — Read-only mode

|98

Q.

Using the Callback Methods

Using the Callback Methods

A “callback” is a 4D project method which is executed by a plug-in. ArealList Pro lets you make use of callbacks when displaying an
Arealist Pro area.

Callbacks are method types that allow you to react according to a user’s actions - for example, to carry out data validation, or to
enable/disable buttons depending on which options are available.

There are seven actions that can trigger a callback:

An Arealist Pro event
Arealist Pro area selected
Arealist Pro area deselected
Cell entered

Cell exited

Popup entry

Edit menu action

In addition, Calculated Columns use a callback method to perform their calculations in field display or array display mode.

Q |100

Using the Callback Methods

Callback Parameters

All callbacks receive the area long integer reference as their first parameter ($1) You must use the following declaration in your
callback method:

C_LONGINT ($1)

Since the long integer $1 parameter contains 4D’s representation of the ArealList Pro object, it can be used as the first parameter
of any AreaList Pro method called.

Most callback methods receive additional parameters, which need to be declared also, as documented below.

Some callback methods are actually functions, and they return a value.

m The callback set by ALP_Area_CallbackMethOnEvent returns a longint, so $0 must be declared as a longint. If the returned value
is 0, no further code will be executed on event (neither object method nor form method).

m The callback set by ALP_Area_CallbackMethEntryEnd returns either True or False; if it returns False (rejected), the user will not
be allowed to leave the cell. This enables you to do all kinds of data validation.

m The callback set by ALP_Area_CallbackMethPopup returns either True or False; if it returns True (click handled) ArealList Pro
won't display its own popup.

m The callback set by ALP_Area_CallbackMethMenu returns a longint. If the returned value is 0, AreaList Pro will process the Edit
menu action, otherwise the callback has overridden this processing (AL Edit Menu Handled Mask).

Event

Property: ALP_Area_CallbackMethOnEvent

Parameters:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //AreaList Pro event
C_LONGINT($3) //4D event
C_LONGINT($4) //last clicked column (or column under the pointer for mouse moved event)
C_LONGINT($5) //last clicked row (or row under the pointer for mouse moved event)
C_LONGINT($6) //modifiers
C_LONGINT($0)

The $0 result is a combination of two bits:
m bit O: call the object method and form method

m bit 1: don’t update variables

The combination gives one of the following values:

m 0 = update variables

m 1 = update variables, call the object method and form method
m 2 = do nothing

m 3 = call the object method and form method

Note: the above results are not relevant to Drag and Drop events where $0 is only used in the context of an external object
being dragged over the area (AL Allow drop event). It is used to allow or reject the drop (see Using the Event callback method).

Callback Parameters

Area selected

Property: ALP_Area_CallbackMethSelect

Parameter:
C_LONGINT($1) //AreaList Pro object reference

Area deselected

Property: ALP_Area_CallbackMethDeselect

Parameter:
C_LONGINT($1) //AreaList Pro object reference

Cell entered

Property: ALP_Area_CallbackMethEntryStart

Parameters:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //entry cause
C_LONGINT($3) //record loaded: will only exist when fields are being displayed

Cell exited

Property: ALP_Area_CallbackMethEntryEnd

Parameters:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //exit cause
C_BOOLEAN($0) //allow cell exit

Popup entry

Property: ALP_Area_CallbackMethPopup

Parameters:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) /row
C_LONGINT($3) //column
C_LONGINT($4) //data type
C_BOOLEAN($0) //True if handled; False if not handled

Q |101

Using the Callback Methods

Callback Parameters

Q |102

Using the Callback Methods

Edit menu action

Property: ALP_Area_CallbackMethMenu

Parameters:
C_LONGINT($1) /ArealList Pro object reference
C_LONGINT($2) //edit event
C_LONGINT($0)

Compatibility note: previous versions used a text $3 parameter. This third parameter was used as the return value for Undo
string, but 4D no longer supports this feature.

Calculated column

Property: ALP_Column_Callback

Parameters:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //column number
C_LONGINT($3) //type of data in this column
C_POINTER ($4) //pointer to temporary 4D array (field mode) or sized 4D array (array mode)
C_LONGINT($5) //first record for which to calculate cell
C_LONGINT($6) //number of cells to calculate in column

Callback Parameters

Properties to use with Callbacks

The following Callback properties can be used with the Area and Column command themes

Area properties

Use these properties with commands in the Area theme:

06 |

| 103
Using the Callback Methods

Constant Get Set Per Type Default Min Max Comments
ALP_Area_CallbackMethEntryEnd ("4 v v text End entry callback function. The return value can
be used for validation; the default value is False
ALP_Area_CallbackMethEntryStart ¢/ v v text Start entry callback method (area; action;
{recLoaded])
ALP_Area_CallbackMethPopup 4 4 4 text Popup entry callback method (area; row; column;
dataType)
-> bool:Handled
For popup handling: used when a popup is clicked
but no popup array/menu is defined
The callback is called as function: return False to
invoke internal implementation, otherwise use
AL_SetAreaXXXProperty
($1;ALP_Area_EntryValue;$value) to
actually set the new value and return True
ALP_Area_AlpEvent 4 long int Last ArealList Pro event: see Arealist Pro Event
codes
May be used with AreaRef set to zero (last event
in any area)
ALP_Area_CallbackMethDeselect v v v text Area deselected callback method (area)
ALP_Area_CallbackMethMenu v v v text Edit menu callback function (area; event) ->
long:flags
See the list of the Edit menu constants
ALP_Area_CallbackMethOnEvent v v 4 text Event callback function (area; alpEvt; 4Devent;
column; row; modifiers)
ALP_Area_CallbackMethSelect v v (4 text Area selected callback method (area)
ALP_Area_ToolTip v v text Tool Tip text
To be set from the event callback function
Column Property
Use this property with commands in the Columns theme:
Constant Get Set Per Type Default Min Max Comments
ALP_Column_Callback v v v text Callback method for a calculated column (area;

column; type; ptr; first; count)

If the ArealList Pro area displays several
calculated columns, the callback methods will be
called in the column number order

Properties to use with Callbacks

Q.

Using the Callback Methods

Setting up a Callback

There are two things you need to do in order to use a callback method:
1. Create a method to execute the callback

2. Set the callback method(s) for the area. This is done by calling AL_SetAreaTextProperty with one of the callback properties and
the name of the callback method. For example, to set up a callback that will execute when data entry is initiated, use the ALP_Area_
CallbackMethEntryStart property:

AL_SetAreaTextProperty (myALPArea;ALP_Area_CallbackMethEntryStart;"EntryCallback”)

If you are using the Advanced Properties dialog to set up your area, you can specify the callbacks to use on the Enterability and
Advanced pages.

Warnings

m Callback methods called during cell editing must not modify underlying data (arrays or records) — i.e. they must not resize or
rebuild the arrays (array display) or change the current 4D selection (field display).

m You should not call any AreaList Pro commands which change the number of displayed columns, their position in the area, or
their sorted order in a callback method.

Setting up a Callback

Q.

Using the Callback Methods

Calculated Column Gallback

A 4D callback may be attached to a specific column. When information is needed for this column, AreaList Pro will execute the
callback to allow you to fill the column with data. This allows the displaying of data calculated from one or more fields or arrays as
well as any ad hoc data that is desired.

Parameter Description
$1 Reference of AreaList Pro object on layout
$2 Column number
$3 Type of data in this column (field type or array type)
$4 Pointer to temporary 4D array (field mode) or an existing sized array (array mode)
$5 First row for which to calculate cell
$6 Number of cells to calculate in column

The first three parameters are not absolutely necessary to determine how to fill the column. They are provided to give you more
flexibility in the implementation of the callback method.

m The first parameter is the area long integer reference. This gives you the ability to use this callback method for more than one
ArealList Pro object.The last three parameters are absolutely necessary.

m The second parameter is the column number. This gives you the ability to use this callback method for many columns within a
Arealist Pro object.

m The third parameter is the type of data in the column (field type or array type).

m In field mode, the fourth parameter is a pointer to one of the temporary 4D Arrays used internally by ArealList Pro. This is
where you will load the data to be displayed in the column. In array mode, this is a declared, fully sized 4D array (by you as the
developer), you have to fill the requested elements

m The fifth parameter is the number of the first cell that needs to be filled in the column. This is the same as the selected number
of the row that contains this cell.

m The sixth parameter is the number of cells (rows) to be filled in the column.

You must declare all six parameters ($1 to $6) in the calculated column callback. If any of these parameters are not declared, you
will get an error when compiling the database.

You must use the following declarations in your callback method:
C_LONGINT ($1;$2;$3;$5;$6)
C_POINTER ($4)

See Calculated Columns for details.

Calculated Column Callback

Q.

Using the Callback Methods

Using Callback Methods During Data Entry

Two main callbacks are available to monitor data entry into a cell, when entering and exiting the cell.
In addition, the popup entry callback will run if there is a popup entry mode allowed but no popup array is defined.
In such case: entry callback is called, popup entry callback is called, entry exit is called.

If the popup array/map is defined, entry callback is called, the menu is shown using a dynamic popup menu (or the internal Date/
Time “popup”), entry exit is called.

See Example 3: Using a Popup Callback to create dynamic popups and Data Entry Controls for popup entry details.

In addition to altering the array content, you can change color and style, reject or accept entered data, and change the current data
entry cell using the AreaList Pro commands listed above.

You should not call any command which changes the number of displayed arrays, their position in the area, or their sorted order.

Executing a Callback Upon Entering a Cell

As described above, an “entry started” callback method is a 4D method called when data entry begins for a cell or an AreaList Pro
popup menu is clicked, and is specified by passing the method name in the ALP_Area_CallbackMethEntryStart property.

If this property is not set then no method will be called.

Parameters

ArealList Pro will pass the callback method two parameters if arrays are being displayed, or three parameters if fields are displayed.
m the first parameter is a long integer that corresponds to the AreaList Pro object on the layout

m the second parameter is a long integer that reports what action (mode) caused data entry to begin in the cell

m the third parameter is a long integer that reports whether the record was loaded or not (this parameter only exists when fields

are being displayed)

You must use the following declaration in your callback method:
C_LONGINT ($1;$2;$3)

Click action

The ALP_Area_EntryFirstClickMode property determines how the first click is handled upon beginning entry (when using numeric,
date, time or text entry)

m 0 = the click is routed to the entry widget and the cursor is placed wherever the click occurs (default behavior)
m 1 =ignore click, select all when the value is NULL or the formatted value is empty string (humeric, date, time)
m 2 = ignore click, select all when the value is NOT NULL (numeric, date, time, text)

m 3 = ignore click, always select all (same behavior as when tabbing between the fields)

Note: explicit setting of the highlighted text in the Cell entered callback is always honored.

Using Callback Methods During Data Entry

Q.

Using the Callback Methods

Entry mode

As stated above, the second parameter passed to the callback routine, the long integer $2, contains the mode by which data entry
began, according to the following table:

Constant Value Entry mode

AL Click action 1 Click in Cell

AL Tab key action 2 Tab

AL Shift_Tab key action 3 Shift-Tab

AL Return key action 4 Return

AL Shift_Return key action 5 Shift-Return

AL GotoCell action 6 ALP_Area_EntryGotoCell and variants

See Cell change properties

AL SkipCell action 9 ALP_Area_EntrySkip
AL Other cell popup action 10 Click on cell popup when cursor not already in cell
AL Active cell popup action 11 Click on cell popup when cursor already in cell

Popup menu entry
The entry callback is also executed whenever a popup menu is clicked, but before the menu is actually displayed.
When this occurs, the $2 parameter provided by ArealList Pro will be 10 if the popup was clicked on a cell other than the one actively
in data entry. Mode 11 will be reported if data entry was already established in the cell for which the popup was clicked.

Field mode parameter

The third parameter only exists when fields are displayed, not arrays. If the value is 1, then the record was loaded properly and the
field contents can be edited. If the third parameter is 0, then the record is locked by another process or user.

If typed data entry is underway and the record can not be loaded, then ALP_Area_EntryGotoCell or
ALP_Area_EntrySkip may be used to continue data entry in another cell.

If neither of these properties is used then data entry will end. If popup data entry is underway and the record can not be loaded
then data entry will end.

Executing a Callback Upon Leaving a Cell

As described above, an “entry finished” callback method is a 4D project method called when data entry ends for a cell, or when an
Arealist Pro popup menu is released for a cell not in typed data entry.

The entry finished callback method is specified by passing the method name in the ALP_Area_CallbackMethEntryEnd property.

If this property is not set then no method will be called.

Arealist Pro will pass the callback method two parameters. The first parameter is a long integer that corresponds to the ArealList Pro
object on the layout. The second parameter is a long integer that reports what action (mode) caused data entry to end in the cell.
You must use the following declarations in your entry finished callback method:

C_LONGINT($1) //AreaList Pro object reference

C_LONGINT($2) //exit cause

C_BOOLEAN($0) //allow cell exit

Using Callback Methods During Data Entry

Q |108

Using the Callback Methods

The second parameter passed to the callback routine, the long integer $2, contains the mode by which data entry ended, according
to the following table:

Constant Value Entry mode

AL Click action 1 Click in Cell

AL Tab key action 2 Tab

AL Shift_Tab key action 3 Shift-Tab

AL Return key action 4 Return

AL Shift_Return key action 5 Shift-Return

AL GotoCell action 6 ALP_Area_EntryGotoCell and variants
See Cell change properties

AL ExitCell action 7 ALP_Area_EntryExit or “hard deselect”

AL Cell validate action 8 Deselect the cell (“soft deselect”)
ALP_Area_lgnoreSoftDeselect must be false (0: default value)

AL Other cell popup action 10 Click on cell popup when cursor not already in cell

AL Active cell popup action 11 Click on cell popup when cursor already in cell

The callback method is actually a function. It must return True for the value entered into the cell to be accepted, and False for the
value to be rejected. If the value is rejected the user will not be allowed to leave the cell.

When displaying arrays and data entry is initiated in a cell, the contents of the array element will be copied into the zero element of
the array being displayed in the column. Please read the section “Undo” value for more information.

When fields are displayed, the contents of the field are not copied. Thus it is up to you to save the field contents in the entry started
callback method if they will be needed for comparison in the entry finished callback method.

When displaying arrays and the entry finished callback method is executed, the array element corresponding to the cell has already
been updated with the new value that was entered by the user. Thus, the zero element which contains the old data and the element
representing the current cell can both be used to determine data validity.

Among the possible situations and responses that may occur are the following:

m The data is valid. Set $0:=True to complete data entry for the cell.

The data is invalid. Copy the old data from the zero element to the array element corresponding to the cell.
Set $0:=True to complete data entry for the cell.

For example:
$row:=AL_GetAreaLongProperty ($1;ALP_Area_ EntryRow) //edited cell row

aFname{$row}:=aFname{0} //reset the cell contents to their original state
$0:=True

m The data is invalid. Inform the user that the data is invalid. Set $0:=False to force the user to remain in the cell and enter another
value.

m The data is invalid. Inform the user that the data is invalid. Modify the cell contents, call ALP_Area_EntryGotoCell to go to the
current cell, and set $0:=True. This achieves the same effect as rejecting the entry, but allows the cell contents to be modified.

For example:
$row:=AL_GetAreaLongProperty ($1;ALP_Area_EntryRow) //edited cell row
$column:=AL_GetAreaLongProperty ($1;ALP_Area_EntryColumn) //edited cell column

aFname{$row}:=aFname{0} //reset the cell contents to their original state
AL_SetArealLongProperty ($1; ALP_Area_EntryGotoRow; $row) //go to the same cell
AL_SetArealLongProperty ($1; ALP_Area EntryGotoColumn; $column)

$0:=True

Using Callback Methods During Data Entry - Examples

Q |109

Using the Callback Methods

The AL ExitCell action (7) and AL Cell validate action (8) events depend upon the way the area is deselected.

m Soft deselect happens when the user selects a menu or clicks on a non-focusable object: the AreaList Pro area temporarily
looses the focus.

m Hard deselect: clicking on a focusable object moves the focus to that object, the AreaList Pro area looses the focus.

If ALP_Area_lgnoreSoftDeselect is set to 0 (default value), resizing the window (even using a splitter) will not end the entry and the
exit callback method will receive $2=8.

Assuming that the entry finished callback allows the value, hard deselect will cause the callback (if any) to run with $2=7, in field
mode the record is stored, whereas soft deselect will cause the callback (if any) to run with $2=8, in field mode the record is not
stored.

In other words soft deselect only makes the area deselected temporarily, e.g. a click on a non-focusable checkbox will make it
“active” (focus not drawn), its object method is executed, then the focus is returned to the Arealist Pro area. From the user’s point
of view, soft deselect does not deselect the area.

Note: when the ALP_Area_IgnoreSoftDeselect property is set to true (1) soft deselect is handled as hard deselect.

Examples

Example 1

Let's say that we do not want to allow the State to be modified if it's “CA”. We would create an “entry start” callback method and
initialise it in the On Load event for the ArealList Pro area:

AL_SetAreaTextProperty (myALPArea;ALP_Area_CallbackMethEntryStart;"EntryCallback”)

The EntryCallback method will handle the event when the user clicks into a cell:
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //entry cause
C_LONGINT($3) //only useful when fields are being displayed
C_LONGINT(vCurrCol;vCurrRow)
vCurrRow:=AL_GetAreaLongProperty ($1;ALP_Area_EntryRow) //edited cell row

vCurrCol:=AL_GetAreaLongProperty ($1;ALP_Area EntryColumn) //edited cell column
ARRAY POINTER($ArrayNames;0)
$errorcode:=AL_GetObjects ($1;ALP_Object_Columns;$ArrayNames)
If (vCurrCol=1) /[city
If (SArrayNames{2}->{vCurrRow}="CA”") //pointer to second col array (state)
AL_SetAreaLongProperty ($1;ALP_Area_EntrySkip;1) //disallow data entry
End if
End if

Examples

06 |

Using the Callback Methods

Example 2: Display a Tooltip

We want to display a Tooltip telling the user whether an area is draggable or droppable. First create a callback method:

/IEvent Callback method
C_LONGINT($1;$2;$3;%4;$5;%6)
$Sevent:=$2

Case of

: ($event=AL Mouse moved event)

Case of
: ($1=ProductList)
AL_SetAreaTextProperty ($1;ALP_Area ToolTip;"Drag from this list”)
: ($1=Selected)
AL_SetAreaTextProperty ($1;ALP_Area ToolTip;"Drop onto this list”)
End case

End case

Set this callback method in the On Load phase of the form method for both areas:
Case of
: (Form event=0n Load)
AL_SetAreaTextProperty (ProductlList;ALP_Area_CallbackMethOnEvent;”"EventCallback”)
AL_SetAreaTextProperty (Selected;ALP_Area_CallbackMethOnEvent;”"EventCallback”)

End case

Note: you could also display a tooltip when the mouse is over a column header using $5 = 0 (row 0 is the header).

Example 3: Using a Popup Callback to create dynamic popups

You can use a Popup callback to dynamically change the contents of a column’s popup menu. Suppose that we have various
product types on offer, and each type of product comes in different pack sizes. We want to present to the user a “Pack size” popup

whose contents depend upon the type of the selected product.

When the form is loaded we create some arrays and matching popup menu texts - one for each product type:
/I pack sizes for chocolates
ARRAY TEXT(atChocsizes;3)
atChocsizes{1}:="40z"
atChocsizes{2}:="80z"
atChocsizes{3}:="160z"
tPopChoc:="40z;80z;160z"

/I pack sizes for nuts
ARRAY TEXT(atNutsizes;3)
atNutsizes{1}:="60z"
atNutsizes{2}:="120z"
atNutsizes{3}:="180z"
tPopNuts:="60z;120z;180z”

Examples

| 110

Q |111

Using the Callback Methods

Next we tell AreaList Pro that the Pack Size column (column no. 3 in this example) is enterable only by popup:

AL_SetColumnLongProperty (area;3;ALP_Column_Enterable;2)

Note: we do not attach a popup to that column!

Then we assign a popup callback method to the area:

AL_SetAreaTextProperty (area;ALP_Area_CallbackMethPopup;”Alp_PopupCallback”) // empty popup callback

The callback method Alp_PopupCallback contains the following code:
C_BOOLEAN($0) //Return True if handled; False if not handled
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //row
C_LONGINT($3) //column
C_LONGINT($4) //data type
$go:=True
Case of

. ([product]product_type="chocolate”)
$pop:=tPopChoc
$array:=->atChocsizes

: ([product]product_type="nuts”)
$pop:=tPopNuts
$array:=->atNutsizes

Else
$go:=False

End case
If($go)

$choice:=Pop up menu($pop)

If ($choice>0)
AL_SetAreaTextProperty ($1;ALP_Area_EntryValue;$array->{$choice})
$0:=True

End if

End if

Examples

Q |112

Using the Callback Methods

When the user clicks on the Pack Size popup icon he will see this popup if the product type is chocolate:

This one if it's Nuts:

... and this one if it's Toffee, because we forgot to set up the array for Toffee:

See also Entering data in Arealist Pro with DisplayList.

Examples

ﬂ |113

Columns

Golumns

This chapter presents various column-related topics, such as numbering/order, moving, widths, columns hiding and setting calculated
columns.

Compatibility mode

Here are the compatibility mode differences in AreaList Pro version 9 regarding column behavior.

Compatible mode on

When ALP_Area_Compatibility is set to 1:

the visibility of columns (ALP_Column_Visible) is always reset before drawing and modified according to the number of hidden
columns (ALP_Area_CompHideCols)

the area is made visible on update event (ALP_Area_Visible)

if only one column is to be displayed, it will have the width of the area
columns are physically reordered on Drag

in single row selection mode, the first row is selected during initialization, after a sort or on update

Compatible mode off

If you turn the compatibility mode off (setting ALP_Area_Compatibility to zero):

any columns to be hidden have to be maintained
the columns are not reordered - the order is defined by the grid setup

you can hide any column, not only the columns at the end

Compatibility mode

a |114

Columns

Column numbers in compatible mode off

The columns are physically reordered (and renumbered) only in compatibility mode. When compatibility mode is off, columns are
never moved - they remain in their creation order even if dragged by the user.

Modifying column display
For example, if you drag column 4 and drop it on the first column:
m the displayed column order will be 4, 1, 2, 3

m the internal order is not changed: 1, 2, 3, 4

When you apply any command to a column or a cell in this mode, use the original column number.

Therefore if you change the column order, either by dragging the columns in the interface or setting it using $err:=AL_SetObjects
(area;ALP_Object_Grid;$colOrderArray), then either hiding or showing any column, that AreaList Pro area will revert to the column
order used to initialize the area.

If you want to hide/unhide a column and preserve the column order, manipulate the grid, not the visibility of a column.

ALP_Column_Visibility and ALP_Object_Grid are interdependent.

If you add a column, it has to be added to the grid. That's why the grid is cleared (and later re-created from visible columns).
Similarly, if you remove a column, it has to be removed from the grid.
If you make a column visible, it has to be added to the grid...

On the other hand, if you explicitly set the grid (using AL_SetObjects with ALP_Object_Grid), the visibility of columns is changed
according to the new grid (only columns in the grid will be set to visible, all others will be set to invisible).

Further to, to restore the previous user state you can use AL_Save to save the settings and AL_Load to restore them.

Using Object Property commands

ArealList Pro Object Property commands always return information based upon the original definition, as opposed to the “grid order”
arrangement.

The following properties always use the original (developer defined) column order:
ALP_Object_Source
ALP_Object_ColumnWidth
ALP_Object_HeaderText
ALP_Object_FooterText

For example, if you want to determine the data source of all columns (based upon how the user has rearranged the columns), the
ALP_Object_Source property will always return the “original” order.

You need to use the results from ALP_Object_Grid to determine the user rearrangement.
The same applies to the column widths, for example (see below).

Bottom line: when the user drags a column to a different place, only the grid is changed, not the “physical” column order.

Column numbers in compatible mode off

Q..

Columns

Procedurally moving columns

You can procedurally move columns, similar to the way the user does it via the interface (i.e. drag columns to reorder them).

For a simple grid (just one row of columns - as in AreaList Pro previous versions):
ARRAY INTEGER($columns;0)
Serr:=AL_GetObjects ($area;ALP_Object Grid;$columns) //get current column order
/Ireorder $columns as you want

Serr:=AL_SetObjects ($area;ALP _Object Grid;$columns) //set new column order

Note: in AreaList Pro version 9, compatibility mode off, columns are never moved physically, only the display order is changed.

For example after column number 2 is moved before column 1, when the first displayed column is clicked, column number 2 is
returned.

Column widths

User auto-size

When resize is allowed for an area (ALP_Area_ColumnResize = 1) the user can auto-size a column that is not already programmatically
auto-sized (ALP_Area_AutoResizeColumn/ALP_Area_AutoSnapLastColumn): a double-click on the right column edge will calculate
its width from the data displayed in this column and update the display. This action sets the column’s ALP_Object_ColumnWidthUser
property to zero.

Option (alt)-double-click on any (non programmatically auto-sized) right column edge resizes all the area’s columns at once.

Note: if there is less than 10 points available for an auto-sized column (area width minus sum of all other column widths), it is
not auto-sized, the user width is used (and the area will be horizontally scrollable).

Properties

The user will be able to resize columns if ALP_Area_ColumnResize is set to true (1).

Column widths are accessed through the ALP_Object_ColumnWidth/ALP_Column_Width and
ALP_Object_ColumnWidthUser/ALP_Column_WidthUser properties.

ALP_Object XXX is a “batch” accessor to a property or a multi-valued property.

ALP_Object_ColumnWidth and ALP_Object_ColumnWidthUser are accessors to ALP_Column_Width and
ALP_Object_ColumnWidthUser.

For example, instead of looping through all columns and asking for ALP_Column_Width using AL_GetColumnLongProperty, you
declare an array and call AL_GetObject with ALP_Object_ColumnWidth to fill it.

ALP_Object_ColumnWidthUser is the width of a column, zero means calculate it from the data displayed by this column (auto-size).

ALP_Object_ColumnWidth is the current width of a column. It is either equal to ALP_Object_ColumnWidthUser or calculated from
the data if ALP_Object_ColumnWidthUser is zero (auto-size).

Column numbers in compatible mode off— Column widths

a |116

Columns

ALP_Object_ColumnWidthUser originally has the value specified by the developer. If the user resizes a column, it becomes the
user-specified value, which can be zero (the user double-clicked the separator in the column header).

In other words, these two properties always have the same value, except for auto-size, where ALP_Column_WidthUser is zero and
ALP_Column_Width is the actual width computed from the data.

You can use both ALP_Column_WidthUser and ALP_Column_Width in the setter, which will set both properties and zero will trigger
column width recalculation: then ALP_Column_Width will be set and ALP_Column_WidthUser will be zero.

Saving original settings
You may want to revert back to the original column widths in case the user does not like their “adjustements”.

However, is it not possible to get the original width values, as were passed to ArealList Pro, after the user has adjusted the columns
widths.

You have to get the widths after you initialize the ArealList Pro area and before the user is able to make changes (i.e. in the On Load
phase):

ARRAY REAL (alSavedWidths; 0) // note that we are using a real type array

Serr:=AL_GetObjects (area; ALP_Object ColumnWidthUser; alSavedWidths)

Then you can eventually reset all widths to the original settings:
$err:=AL_SetObjects (area; ALP_Object_ColumnWidthUser; alSavedWidths)

If the advanced properties are used, you can also access their original settings:
$xmIAP:=AL_GetAreaTextProperty (area; ALP_Area_XMLAP)

and reset the whole Areal.ist Pro area:
$err:=AL_Load (area; $xmIAP)

This will, of course, reset everything, not only column widths!

Column wider than the visible area

If you leave the width setting to 0, the column that holds the text may be wider than the visible area. This is a feature

You can limit it to the visible width when you switch horizontal scrolling to “columns” mode:
AL_SetArealongProperty ($eList;ALP_Area ScrollColumns;1)

Displaying column widths
Previous versions used to display column widths in the headers when clicking on a X button located at the area’s lower right corner.

ArealList Pro v9 does more than this. It provides the column width, its number and its data source. The information is displayed in

a tooltip whenever the mouse is over a header or any cell and the three main modifier keys are pressed (command-option-shift on

MacOS, ctrl-alt-shift on Windows).

This behavior is triggered by the ALP_Area_ShowWidths area property, which you can set for example according to the user name:
AL_SetArealLongProperty ($eList;ALP_Area ShowWidths;Num(<>userName="Administrator”))

Value 1 means “display in interpreted and compiled modes”, value 2 means “display in interpreted mode only”.

This is also true with the DisplayList module included into ArealList Pro v9.

Column widths

Q.

Columns

Hiding columns

Hidden columns

ALP_Area_CompHideCols is used to hide the last x columns (x being the property value) or know how many columns are currently
hidden in the area, only in compatibility mode (ALP_Area_Compatibility=1).

If your last x columns are hidden, the value returned by AL_GetArealongProperty ($area; ALP_Area_CompHideCols) will be zero in
compatibility mode off (ALP_Area_Compatibility = 0).

This property is simply unused in such case, but it can be nevertheless set to any positive integer value (or zero) and it will preserve
the value so that you can get it later.

In this case ALP_Area_CompHideCols will return a value even though compatibility mode is off. When you turn compatibility on, it
will be used to modify the visibility of columns (the grid is not cleared when you modify the value of ALP_Area_Compatibility) and
will return their count.

Note: the grid is not cleared either when you modify ALP_Area_CompHideCols in compatible mode on
(ALP_Area_Compatibility = 1).

Number of hidden columns

There is no single accessor to set or get the number of hidden columns in compatibility mode off (ALP_Area_Compatibility = 0).

The simplest way is to combine ALP_Area_Columns and ALP_Object_HeaderTextNH:

$count:=AL_GetAreaLongProperty ($area; ALP_Area Columns) //number of columns

ARRAY TEXT($headers;0)

$err:=AL_GetObjects ($area; ALP_Object HeaderTextNH; $headers)

/lheader text for visible columns (NH stands for Not Hidden)

$count:= $count - Size of array ($headers) //number of hidden columns (total minus not hidden)

Note: in AreaList Pro version 9 (only in compatibility mode off), you can hide any column, not only the columns at the end.

Grid clearing

In both compatibility modes (on or off) the grid is lost (cleared) when:
m a column is added

m a column is removed

m a column’s visibility is changed

m ALP Area RowsInGrid is set (does not have to be changed)

m ALP_Area_ColsInGrid is set (does not have to be changed)

m AL_SetColOpts is called with a different 5th argument (columns to hide) - note that this call of a v8.x command will turn
compatibility mode on

Once the grid has been cleared or if it has not been not defined, it is (re-)created from visible columns.

Hiding columns — Grid clearing

a |118

Columns

Calculated columns

Arealist Pro columns can be calculated “on the fly” to display the results of calculations performed in a callback method.

This feature is available for both field and array modes.

Setting a Calculated Column (field mode)

The AL_AddCalculatedColumn command is used to set up calculated columns in field mode.

The following table shows the data types that may be displayed in a calculated column in field mode:

Constant Value
Is Alpha Field

Is Real

Is Text

Is Picture

Is Date

Is Boolean

Is Integer

Ol WIN| I~|O

Is Longlnt

-
N

Is Time

For example, to display a calculated column of type Real, pass Is Real (1) in the dataType parameter and the Calculated Column
Callback in the callbackMethodName parameter.

Setting a Calculated Column (array mode)

The ALP_Column_Calculated property is used to set up calculated columns in array mode.

This property can only be set in this mode.

To make an column calculated, use:
AL_SetColumnLongProperty (area; column; ALP_Column_Calculated; 1)

AL_SetColumnTextProperty (area; column; ALP_Column_Callback; methodName)

The callback parameters are expected to be declared as (area:L; column:L; type:L; ptr:W; first:L; count:L).

This callback method has the same parameters as a column callback in fields mode, but the array is fully sized (by you as developer),
you have to fill the requested elements.

The type is the actual array type, not a field type (e.g. Integer Array instead of Is Integer)

Calculated columns

Columns

The following table shows the data types that may be displayed in a calculated column in array mode:

Constant Value
Real array 14
Integer array 15
Longlnt array 16
Date array 17
Text array 18
Picture array 19
String array 21
Boolean array 22
Time array (v14) 32

Setting the Callback Method

In field mode, use the callbackMethodName parameter in AL_AddCalculatedColumn to set the Calculated Column Callback for a

column. The ALP_Column_Callback property can later be used to modify the callback method name on the fly.

In array mode, directly use the ALP_Column_Callback property.

In field mode, ArealList Pro will dimension the temporary array before invoking the calculated column callback. There is no need to

do it in the callback itself.

In array mode, the arrays used to place the calculated values must be declared and sized just as the other displayed arrays.

Field mode example

The following is an example of a calculated callback method in field mode. It merely calculates an employee’s one year anniversary

by adding one year to their hire date (using the 4D Add to date function).
/I CalcColCallback
//'$1: Area reference (Arealist Pro longint reference)
//$2: Column number
//$3: Type of data in this column
/1$4: Pointer to temporary 4D array
/1 $5: First record for which to calculate cell
//$6: Number of cells to calculate in column
/I Declare the parameters
C_LONGINT ($1;$2;$3;$5;$6) //these must be declared
C_POINTER ($4) //this must be declared
C_LONGINT ($i)
ARRAY DATE ($aHireDate;0) // local array can be used since we only need it here for calculation
SELECTION RANGE TO ARRAY ($5;$5+$6-1;[Employee]Hire Date;$aHireDate)
For ($i;1;$6)
$4->{$i}:= Add to date($aHireDate{$i};1;0;0)
End for

Calculated columns

| 119

a |120

Columns

Array mode example

The following is an example of a calculated callback method in array mode, using the same simple calculation as above, but with
4D arrays being displayed.

These arrays have been initially declared and included in the AreaList Pro area with either AL_AddColumn or AL_SetObjects with
the ALP_Object_Columns property for both non-calculated arrays and calculated arrays:

/I Declare the arrays

ARRAY TEXT (aName;0)

ARRAY DATE (aHireDate;0) //not displayed, but needed for calculation

SELECTION TO ARRAY ([Employee]Name;aName;[Employee]Hire Date;aHireDate)
ARRAY DATE (aAnniversary;Size of array(aName)) //this is our calculated array - must be of same size!
/[Arrays to display

$error:= AL_AddColumn(eList;->aName;0) //no need to specify colum number
$error:= AL_AddColumn(elist;->aAnniversary;0)

// Set calculated status and callback method for column 2
AL_SetColumnLongProperty (elist;2; ALP_Column_Calculated; 1)
AL_SetColumnTextProperty (eList;2; ALP_Column_Callback; “CalcColCallbackArray”)

Now we use the callback as previously to populate the array on the fly:
/I CalcColCallbackArray
//'$1: Area reference (Arealist Pro longint reference)
//$2: Column number
//'$3: Type of array in this column
//$4: Pointer to the displayed array
/1'$5: First row for which to calculate cell
//$6: Number of cells to calculate in column
/I Declare the parameters
C_LONGINT ($1;$2;$3;$5;$6) //these must be declared
C_POINTER($4) //this must be declared
C_LONGINT (5i)
For ($i;$5;$5+$6-1)
$4->{$i}:= Add to date(aHireDate{$i};1;0;0)
End for

Calculated columns

Column dividers

Column dividers display can be fine-tuned with the ALP_Area_ShowColDividers bit-field property:

Bit number Description

Columns

| 121

0 Draw over data and footer
1 Hide footer dividers (bit 0 ignored if bits 0 and 2 off)
2 Draw last column divider

Note: value 2 should logically be “no divider” as value 0 but Arealist Pro ignores bit 0 for compatibility in this case.

Possible values
Bit 0 Bit 1 Bit 2 Value Behaviour
draw hide all draw last
dividers, not footer col divider
last col dividers
0 0 0 0 No divider
1 0 0 1 Draw dividers, including footers, not the last one to the right
0 1 0 2 Draw dividers except footers, not the last one to the right (bit 0 ignored)
1 1 0 3 Draw dividers except footers, not the last one to the right
0 0 1 4 Draw only the last divider to the right including footer
1 0 1 5 Draw dividers, including footers, including the last one to the right
0 1 1 6 Draw only the last divider to the right except footer
1 1 1 7 Draw dividers except footers, including the last one to the right
Examples

AL_SetArealLongProperty ($area; ALP_Area_ShowColDividers;0) // No divider

AL_SetArealongProperty ($area; ALP_Area_ShowColDividers;1) // Draw dividers, including footers, not the last one to the right
AL_SetArealongProperty ($area; ALP_Area_ShowColDividers;2) // Draw dividers except footers, not the last one to the right (bit 0 ignored)

AL_SetArealLongProperty ($area; ALP_Area_ShowColDividers;3) // Draw dividers except footers, not the last one to the right

AL_SetArealLongProperty ($area; ALP_Area_ShowColDividers;4) // Draw only the last divider to the right including footer

AL_SetArealLongProperty ($area; ALP_Area_ShowColDividers;5) // Draw dividers, including footers, including the last one to the right

AL_SetArealLongProperty ($area; ALP_Area_ShowColDividers;6) // Draw only the last divider to the right except footer

AL_SetArealongProperty ($area; ALP_Area_ShowColDividers;7) // Draw dividers except footers, including the last one to the right

Colors

Column divider colors are set with ALP_Area ColDivColor.

Column dividers

Q .

Working with Colors

Working with Colors

You can use colors in your Arealist Pro areas in various ways: to color text, backgrounds, calendar elements, and so on.

Specifying Colors
Internally, all colors in AreaList Pro version 9 use ARGB (alpha-red-green-blue, each channel using 8 bits:0-255/0x00-0xFF).

You can use the alpha channel to specify transparency. The value should be between 0 - 255 (0x00 - OxFF).Transparency of 0
means fully transparent (invisible) color; transparency of 255 (OxFF) means fully opaque color.

However, there are seven ways that you can specify colors in AreaList Pro. Where necessary, they will be converted to the ARGB
model. The seven methods can be split into two groups: color values passed as string values, and color values passed as longint
values.

Specifying Colors

Q.

Working with Colors

Color values passed as string values

1. Using one of the standard color names (red, green, blue, dark red, dark blue, white, gray, light gray, cyan, magenta, yellow, brown, orange,
dark orange, purple, black). In this case, you pass the color name using one of the text commands (e.g. AL_SetCellTextProperty).

For all above values, the alpha is always 100%. You can also use “transparent”, which will set the alpha channel to 0%.

2. Using standard hexadecimal notion with one of the text commands.
e.g. “OxFFFF0000” is 100% red

3. Using hexadecimal ARGB (alpha-red-green-blue) notation. In this format, a leading # is used, followed by two hexa numbers per
channel; if less than four channels are specified, full alpha (OxFF) is assumed. Note that this is the format used internally by AreaList
Pro.

e.g. “#FF0000” is the same as “#FFFF0000” = 100% red

4. 3- or 4-part RGBA comma-separated real type channel values can be used with one of the text commands. Channel values have to be
inrange 0.0 - 1.0; if three values are specified, alpha is assumed to be 1.0. This is simply the percentage for each color (and alpha for
transparency). Note that in this case alpha is at the end. This format conversion is triggered by any “.” in the value.

e.g. “1.0,0,0” is the same as “1.0,0,0,1.0” = 100% red

5. 3- or 4-part RGBA comma-separated long integer type channel values can also be used with one of the text commands. Channel
values have to be in the range 0 - 65535; if three values are specified, alpha is assumed to be 65535. Note that in this case alpha is
at the end.

e.g. “65535,0,0” is the same as “65535,0,0,65535” = 100% red

6. Using the “good old” 4D 256 color palette. Any 4D 256 color palette can be specified as “Pxxx” where xxx is the palette index in range
1 —256. For example:
AL_SetCellTextProperty ($area;$row;$col;ALP_Cell_FillColor;"P2”) //set the fill color to yellow

The 4D color palette is a 16 by 16 grid. To determine a color’s value, you can locate the color’s position on the color grid in the Design
environment (the Color submenu which is available in the Form and Method editors), and count the number of rows down and columns
across.

The equation is: ColorValue= ((RowNumber — 1) x 16) + ColumnNumber.

Color passed in longint values

7. Using a long integer with a longint command (e.g. AL_SetCellLongProperty). In this case, nothing is assumed about the alpha
channel and the alpha value needs to be specified. The color can be conveniently written in hexa notation like OXAARRGGBB; for
example OxFFOOFFOO is 100% green. However, this number in decimal notation is -16711936.

Note that the color picker and 4D RGB commands use longint values for color without the alpha channel. This means that the
developer must add alpha channel information to the color if he is going to pass a color to AreaList Pro by code - for example:

$SALPColor:=$Color | 0xFF000000

Specifying Colors

Color Options

You can specify colors for the following elements in your ArealList Pro areas:

Area properties

Use these properties with commands in the Area theme:

Constant

Get Set Per

Type

Default

Min

Max

Q

Working with Colors

Comments

| 124

ALP_Area_AltRowColor

v v Vv

color

#FFEEEEEE

Alternate row color (default is light gray)

ALP_Area_AltRowOptions

v v Vv

long
int

0

15

Alternate row coloring options:

bit 0: 1 = enable, 0 = disable

bit 1: 1 = apply ALP_Area_AltRowColor to even
rows, 0 = apply to odd rows

bit 2: 1 = alt color applies to empty space below
the last row (if any)

bit 3: 0 (default) = use the existing color when
defined at cell or row level, instead of alternate
color for alternate rows (column color is ignored)

1 = mix the alternate color with the existing color
set for the cell/row/column (in this order)

ALP_Area_ColDivColor

color

#FF808080

Column divider color (default is gray)

ALP_Area_MiscColor2

color

#FFEEEEEE

Area color below the vertical scrollbar

MODIFIED: this area is not customizable in
ArealList Pro v9 (the scrollbar is drawn, and it is
bigger than in 8.x)

In ArealList Pro v9, this color is used as the
background color: before drawing anything, the

whole Arealist Pro area is erased using this color

Default is light gray

ALP_Area_MiscColor3

color

#FFEEEEEE

Area color left of the horizontal scrollbar
Default is light gray

ALP_Area_MiscColor4

color

#FFEEEEEE

Area color right of the horizontal scrollbar
Default is light gray

ALP_Area_RowDivColor

color

#FF808080

Row divider color (default is gray)

Color Options

Constant Get Set Per Default Min Max

Type

Q

Working with Colors

Comments

| 125

ALP_Area_CalendarColors v 4 text

8 colors separated with “|” to be used by the date
«calendar» popup

First 5 colors define object backgrounds: active
month, inactive month, selected date, current
date, current selected date

Next 2 colors define foreground: numbers in active
month, numbers in inactive month

8t parameter is the popup background color; it
needs a non-zero alpha channel to be set, e.g.
#FFE9F1FF instead of #EQF1FF

When not set explicitly, default colors depend on
ALP_Area_CalendarLook

To restore the default colors (as if ALP_Area_
CalendarColors was not set), pass an empty text
value

Default values are:

“#00FFFFDD|#00EEEEEE|#00EEAAAA|
#00FF8888|#00FF5555|#00000000|
#00444444|#00CCCCCC”

for the regular (default) calendar look, and:

“#F FFFFFFE|#FFFFFFFE[#00EEEEEE]
#00FF8888|#008F8F8F|#00000000|
#00444444|#FFFFFFFC”

for the alternate Date popup (according to
ALP_Area_CalendarlLook)

Column Properties

Use these properties with commands in the Columns theme:

Constant Get Set Per Default Min Max

Type

Comments

ALP_Column_HdrTextColor v v v color #FF000000

Font color
Default is black

ALP_Column_FtrBackColor color #00FFFFFF

Background color
Default is transparent (no color)

ALP_Column_FtrTextColor color #FF000000

Font color
Default is black

ALP_Column_BackColor color #00FFFFFF

Background color
Default is transparent (no color)

ALP_Column_TextColor color #FF000000

Font color
Default is black

Row Properties

Use these properties with commands in the Rows theme:

Constant Get Set Per Default Min Max

Type

Comments

ALP_Row_BackColor 4 v 4 color

Background color

ALP_Row_TextColor v v 4 color

Font color

Color Options

Q

Working with Colors

Cell Properties

Use these properties with commands in the Cells theme:

| 126

Constant Get Set Per Type Default Min Max Comments
ALP_Cell_BottomBorderColor v v v color Bottom border color
ALP_Cell_FillColor v v v color Color used to fill the border rectangle
ALP_Cell_LeftBorderColor v v v color Left border color
ALP_Cell_RightBorderColor v v v color Right border color
ALP_Cell_TopBorderColor 4 4 4 color Top border color
ALP_Cell_BackColor 4 v v color Background color
ALP_Cell_TextColor 4 v v color Font color

Converting RGB values

Arealist Pro colors are very close to the format used by 4D.
In 4D, RGB colors are long integers interpreted as 0xOORRGGBB, so there are 3 channels each in range 0 - 255.
Arealist Pro uses ARGB - 0XAARRGGBB - 4 channels each in range 0 - 255.

For example, let's examine the following ArealList Pro v8.5 command:

AL_SetRowRGBColor ($area;$i;-1;-1;-1;<>greenbar_red;<>greenbar_green;<>greenbar_blue)

Where:
m <>greenbar_red:=244
m <>greenbar_green:=248

m <>greenbar_blue:=255

Let's combine them using simple math:

$argh:=0xFF000000 | (<>greenbar_red << 16) | (<>greenbar_green << 8) | <>greenbar_blue
We get OXFFF4F8FF.
Generally, to create ARGB color for use with ArealList Pro, use

$argb:=($alpha << 24) | ($red << 16) | ($green << 8) | $blue

which is the same as
$argb:=($alpha * 256 * 256 * 256) + ($red * 256 * 256) + ($green * 256) + $blue

To create RGB color for use with 4D, use
$rgb:=($red << 16) | ($green << 8) | $blue

which is the same as
$rgb:=($red * 256 * 256) + ($green * 256) + $blue

Converting RGB values

Q.

Working with Colors

Row Coloring Options

Combining bits in the Row Options property

Bits 0, 1 and 2 are used in combination to manage all possible alternate color row settings.

The resulting long integer sets the alternate row coloring (“zebra” style) options. Here are the possible values (this is for bit 3 =0, add 8
to the values below to set bit 3 to true and combine alternate color with existing colors, see below, and also ALP_Area_AltRowOptions):

m 0, 2,4, 6 - don’t use alternate row coloring (bit 0 = 0)

m 1 - use alternate coloring for even rows (bit 0 = 1)

m 3 - use alternate coloring for odd rows (bits 0 and 1 = 1)

m 5 - use alternate coloring for even rows including empty space below last data row (bits 0 and 2 = 1)

m 7 - use alternate coloring for odd rows including empty space below last data row (bits 0, 1 and 2 = 1)

The “empty space below last data row” refers to the area between the last row and the footer/horizontal scrollbar/bottom of the
Arealist Pro area, where a click or a rollover reports -2 using ALP_Area_ClickedRow or ALP_Area_RollOverRow.

See Row Numbering.

Combining Alt Row color with Background color

When bit 3 is set to true (1) in ALP_Area_AltRowOptions, the cell’'s background color is first set as defined (from cell, row or column
settings in that order), then combined with the alternate row color in case this other color is defined. See ALP_Area_AltRowOptions.

The result for alternate rows will be a blend of both specific and alternate colors.

Empty rows
The background column color will always apply to data rows as well as any visible empty rows at the bottom of the area.

This code sets a color for column 1:
AL_SetColumnLongProperty (eList;1;ALP_Column_BackColor;0xFFAAEECC)

Row Coloring Options

Q |128

Working with Colors

To apply the color only to data rows and leave the bottom part blank, we can use the ALP_Cell_BackColor cell property, and -2 as
the value for the row parameter of AL_SetCellLongProperty, meaning “all rows”:

AL_SetCellLongProperty (elList;-2;1;ALP_Cell_BackColor;0xFFAAEECC)

Alternate row coloring will apply to the “empty” bottom section when bit 2 of ALP_Area_AltRowOptions is set to true (1):
AL_SetArealLongProperty (eList;ALP_Area_AltRowOptions;5)

To apply alternate row coloring to the data rows as well, use 13 instead of 5 for ALP_Area_AltRowOptions (bit 3 means “blend the
cell color with alternate row color”):

AL_SetArealLongProperty (elList;ALP_Area_AltRowOptions;13)

However, but for that option to produce any visual effect, the alternate row color must be partially transparent, e.g. OX80EEEEEE
instead of OXFFEEEEEE:

AL_SetArealLongProperty (elList;ALP_Area_AltRowColor;0x80EEEEEE)

Row Coloring Options

Coloring Cell Sections

Summary

Here are the various parts of the cell, which can be individually set/colored:

Column dividers

Top border

Right border
Row dividers /

\ Bottom border

Fill color

Left border
Background color

Example

Q.

Working with Colors

To illustrate the various cell sections that can be set we’ll use the AreaList Pro demonstration database (AreaList > Configuration

Options then Format > Cell Settings).

Coloring Cell Sections

Q.

Working with Colors

Getting started

Let’s start with no padding, no offset, no borders, no colors:

Padding and Dividers

The area will look more legible with some padding to move the text away from the cell borders.

We also set Column Dividers to magenta and Row Dividers to blue:

Background and Fill

Now we set a light blue Background and yellow Fill, but we only see the Fill since there are not Cell Offsets yet:

Coloring Cell Sections

Q |131

Working with Colors

Text Editing

We will see our blue Background if we enter a cell for text editing:

Cell Offsets

Setting Cell Offsets will reveal our Background color:

Borders

Let's set our top and left Borders to red, 5 points thick. Note that right and bottom borders are transparent here, since we set their
thickness but no color:

Transparent Fill

Arealist Pro v9 provides full transparency (alpha channel) support. Setting the Fill color to totally transparent (beginning with #00
instead of #FF = 100 % opaque) would reveal our Background color behind the whole cell:

Coloring Cell Sections

Q |132

Working with Colors

Final Result

Let’s revert to our opaque yellow Fill and add green right and bottom Borders:

Coloring Cell Sections

Q.

Working with Colors

Custom row highlight

You can manage the highlight of the selected rows from ArealList Pro yourself, beyond what the system offers.

For example, modify the foreground, style, font and background colors of a row when you click on an row in ArealList Pro:
// disable row hightlighting on form/object load event
AL_SetArealLongProperty ($area;ALP_Area_SelNoHighlight;1)

On click event, loop on each selected row:
AL_GetObjects ($area;ALP_Object Selection;$selectedRows):

Backup selected rows numbers, style, font and colors, then apply the following:
AL_SetRowLongProperty($area;$rowNum;ALP_Row_StyleF;$styleNum) //style
AL_SetRowTextProperty ($area;$rowNum;ALP_Row_FontName;$fontName) //font
AL_SetRowTextProperty ($area;$rowNum;ALP_Row_TextColor;$foreGroundColor) //foreground color
AL_SetRowTextProperty ($area;$rowNum;ALP_Row_BackColor;$backGroundColor) //background color

Empty column background color

When the total width of all columns is lesser than the area’s display width, and neither ALP_Area_AutoResizeColumn or ALP_Area
AutoSnapLastColumn properties are used, an empty “column” will fill the remaining space on the right. Its background color will be
inherited from the last visible column’s property.

Setting the entire area to a single color

Here’s how to set the entire AreaL.ist Pro area to a single color (including empty rows):

m Set ALP_Area_MiscColor2 (background), ALP_Area MiscColor3 (space to the left of horizontal scrollbar when columns are
locked) and ALP_Area_MiscColor4 (space under vertical scrollbar when both scrollbars are shown) to the color.

m Leave the column list background (ALP_Column_BackColor) at default (#00FFFFFF = transparent), otherwise the whole column
(including empty rows) will use that column color (if not overridden by row/cell color or alternate row coloring).

Patterns

Patterns are no longer supported. They are interpreted by Arealist Pro version 9 as transparency ratios (alpha channel value):
m “black” or 1: 100% (OxFF)

m “darkgray” or 4: 75% (0xCO)

m “gray” or 2: 50% (0x80)

“lightgray” or 3: 25% (0x40)

m “white” or 0 or “none” or “” or anything else: 0% = no drawing (0x00)

Custom Row Highlight-Empty Column Background Color - Setting the entire area to a single color-Patterns

Q.

The Advanced Properties Dialog

The Advanced
Properties Dialog

The Advanced Properties Dialog

The Advanced Properties Dialog allows you to configure most aspects of an AreaList Pro area without having to do any programming.
To use this option:

1. Create a new ArealList Pro area on your form
2. Click on the Edit ... button next to Advanced Properties in the object’s Property List window

3. The Advanced Properties window opens:

The Advanced Properties Dialog

Q.

The Advanced Properties Dialog

Column Setup Tab

Default Column

You can use the default column to set up the attributes for new columns you include by clicking the Add button. New columns that
are added are assigned the settings in the default column.

This behaviour is true at any time, not just the first time that the Advanced Properties dialog is configured. If you change the settings
for the default column, any new columns you add will get the new default settings, but existing columns will not be changed. To apply
the changes to existing columns, click the Apply to all Columns button.

Apply to all Columns
Note that most of the objects on this page have their labels shown in blue when the defaut column is selected.

If you have made a change to your Default column and you want to apply that change to all the existing columns, click this button.
The current Default column settings will be applied to the properties with blue labels for all columns.

Column Settings
Display: Choose whether you want to show fields or arrays in the area.
Main Table: If displaying fields, select the basic table that the fields will be drawn from.

Columns: This is where you specify the actual columns that will appear in the area. To add a new column, click on the big + sign.
The display will then change:

T~
~

Column is a field/calculated: if the data for this column will be drawn directly from a field, choose the table and field (you need to add
at least one column with the plus “+” button to display the Table & Field popup menus).

If you want to add a calculated column, choose the Calculated column radio button.

Column Setup Tab

Q.

The Advanced Properties Dialog

The display changes again:

To use a calculated column, you will need to create a callback method to handle the actual calculation.

Choose the calculated column type and enter the name of your callback method. For an example of using a callback method to
perform a calculation, see the example for the AL_AddCalculatedcolumn command.

If you are displaying arrays, enter the name of the array you want to use in this column.

Note: arrays must be declared before the area is displayed.

Header Text: Enter the title for this column.

Format: You can enter a standard 4D formatting mask here. For example, to display a price with a dollar sign and two decimal
places, enter the format “$###0.00".

Footer Text: Enter some text for the footer row, if desired.
Column Width: The default columns width will be as specified in the Default column setting (Autosize, unless you change it).
Hidden: Select if you want this column to be hidden.

Use data size for row height: Row height will be calculated according to the font size. If you are displaying pictures in any column, this
setting will read “Use picture size for row height” when that column is selected.

Style options (font, size, color, etc.): You can select any styling for each column.

Enterability: For each column you can specify whether it will be enterable, and by what means - e.g. by keyboard and/or popup. If
you select By Popup, you'll need to enter the name of the array with which to populate the popup in the Popup array field.

Boolean data, display: Choose how you want Boolean data to be displayed (check box with title, check box without title, or radio
button).

Column Setup Tab

Q.

The Advanced Properties Dialog

General Options

Here you can set various options that will apply to the entire area, such as whether column resizing is allowed, if the Sort Editor
should be available, whether headers and footers will be shown, and so on:

4 N

General Options

Q |138

The Advanced Properties Dialog

Enterability

On the Enterability tab you can specify the entry and selection mode, various keyboard entry options, and callbacks to use when
entering or leaving a cell:

4 N

Callbacks: You can specify a callback method that will execute when an enterable cell is entered or exited.

Enterability

Q |139

The Advanced Properties Dialog

Advanced

The Advanced tab enables you to customise the look of your AreaList Pro area by choosing various options such as colors, whether
to hide or show scroll bars, and how to format data when it is copied to the clipboard.

You can also designate callback methods to run when:
m The area is selected or deselected
m The Edit menu is used

m An area event occurs

Advanced

Q.

The Advanced Properties Dialog

Dragging

Before you can configure any dragging and dropping with AreaL.ist Pro, you must select the Draggable and/or Droppable properties
in the Action topic of the area’s Property List.

On this tab you describe what kind of drag and drop actions you want to allow:

Allow multiple row dragging: If this option is not selected, only one row can be dragged and dropped. If it is selected, the user can
selected multiple rows to drag and drop in one action.

Scroll area size: The size of the frame around the Arealist Pro area border where dragging will start area scrolling. When the user
drags something near the Arealist Pro area border, the contents will be scrolled.

Row drag only with Option key: If this is selected, a row drag will only be allowed if the Option key is used.

Row dragging: Choose whether drags go between rows or on top of rows in the destination area.

Dragging

Q |141

The Advanced Properties Dialog

Source and Destination Codes

When you want to enable dragging between two Areal.ist Pro areas, you pair them up by specifying Source and Destination codes.

For example, suppose you want to allow rows to dragged from this area (the Source). You could create a code “OKtodrag” and add
it to the Rows area under Source Codes:

You would then add the same code to the Destination Codes area in the AreaList Pro area that you want to allow dragging TO from
this area.

You can add any number of codes to each option - one code per line.

Drags can take place between Arealist Pro areas on the same form, on a different form in the same process, or on a form in another
process. Drags can also take place from non-Arealist Pro objects such as 4D fields and external files.

Once an object has been dragged, you will need to handle the Drop event programmatically; AreaList Pro doesn’t know what you
want to do with the data that has been dropped, so you must tell it.

Please refer to the Drag and Drop topic for more detailed information and some examples.

Dragging

Q |142

The Advanced Properties Dialog

Preview

In the Preview tab you can - guess what - see a preview of how your area will look. For example, this preview shows an area in
which various options have been selected:

m the Price column is in blue italics and displays a $ sign
m a popup menu has been associated with the Type column

m the New column is displayed as a checkbox

Click OK when you are happy with your settings, and your area is ready to use.

Preview

Q.

Drag and Drop

Drag and Drop

Arealist Pro enables rows, columns and cells to be dragged and dropped from and to AreaList Pro areas.

Overview

You can control which areas can be dragged from or to, what options are available (e.g. whether multiple rows can be dragged or
not), and what happens after a drop. Row dragging can be initiated either by alt/option-clicking on an item (cell, row, or column)
and dragging it or by simply dragging it, depending on how it has been configured.

When an item is clicked and dragged, the pointer will change.

[
If the drop is allowed, the pointer will have a plus symbol attached to it when it hovers over the “drop” area: @

Y
If the drop is not allowed by the destination object, you'll see a “no entry” sign instead:

Dragging

You can allow rows, columns and cells to be dragged from an ArealList Pro area and dropped to various destinations:
m arow, a column or a cell in the same AreaList Pro area

m arow, a column or a cell in another ArealList Pro area

m a day, an event or a banner in a CalendarSet area

m any 4D droppable object

m another application that accepts text

Dropping

You can also allow dropping onto rows, columns and cells in an AreaList Pro area from various sources:
m row(s), a column or cell(s) from the same Arealist Pro area

m row(s), a column or a cell(s) from another ArealList Pro area

m events and banners from a CalendarSet area

m any 4D draggable object

m text or other contents displayed in another application window

m a document in a MacOS Finder or Windows Explorer window

Overview

http://www.e-node.net/cs

@ |144

Drag and Drop

Item types

When dragging and dropping between Areal.ist Pro areas, or within the same area, the destination item will match the source item:
m row(s) will be dropped onto a row
m column will be dropped onto a column (use the header to select the source column that you want to drag)

m cell(s) will be dropped onto a cell

Controlling the Drag and Drop

You can control each ArealList Pro area's draggability and droppability:

m if the area can be dragged from

m if the area can be dropped to

m which item types (rows, columns and/or cells) can be dropped

m which ArealList Pro or CalendarSet areas can be the source or destination
m if external sources (non-ArealList Pro/CalendarSet objects) are allowed

m whether an attempted a drop on the area is accepted or rejected

m what happens after a drop

Configuring Drag and Drop

You must configure ArealList Pro to allow dragging out of and into an ArealList Pro area.

Setting the 4D Object Properties

The first thing you must do is select the Drag and Drop properties for the AreaList Pro areas as 4D objects.
1. Select the source object (the ArealList Pro area that you want to enable dragging from)

2. In the Action topic of the Property List dialog, select the Draggable checkbox:

¥ B¢ Action
Method
Draggable
Automatic Drag
Droppable
Automatic Drop

DO]@H

3. Select the destination object (the ArealList Pro area that want to drop to)

m 4. In the Action topic of the Property List dialog, select the Droppable checkbox.
An area can be both Draggable and Droppable, which will amongst others enable drag and drop within the area.

Note: in compatibility mode, the AreaList Pro area is draggable and droppable even if it is not set as draggable or droppable in
the object properties.

Configuring Drag and Drop

@ .

Drag and Drop

Drag and drop Properties

Arealist Pro properties provide the control necessary to allow or disallow dragging within an area, between two or more areas or
from non-plugin objects. You can allow dropping from and onto rows, columns and/or cells.

In order to facilitate dragging and dropping, you need to tell AreaList Pro which area(s) you want to allow the dragging between,
and specify various options such as which objects can be dragged (rows, columns, and/or cells), which areas those objects can be
dragged to and from, and whether certain keys - such as the Alt/ Option key - will have any particular effect.

Access “codes” overview

To allow dragging out of AreaL.ist Pro, you must pass an “access code” for each type of item (rows, columns and/or cells) that can
be dragged from this area. You must specify at least one code to enable dragging, using ALP_Area_DragSrcXXXCodes properties
(where XXX is Row, Col or Cell).

Any number of codes can be passed. Allowing many codes provides for more flexibility in enabling and disabling dragging between
various areas.

In order to allow dropping into AreaList Pro, you must pass an “access code” for each type of item (rows, columns and/or cells)
that can be the destination of a drop. You must specify at least one code to enable dropping, using ALP_Area_DragDstXXXCodes
properties (where XXX is Row, Col or Cell). As with source code properties, any number of codes can be passed for flexibility reasons.

Property list

Arealist Pro provides a number of properties that you can use to set and find the required details. Use these properties with the
ALP_SetArea... and ALP_GetArea... commands:

Property Type Description
ALP_Area_DragDataType longint Dragged data:

1 =row(s)

2 = column

3 = cell(s)
ALP_Area_DragDstArea longint Destination area
ALP_Area_DragDstCell longint Destination area cell
ALP_Area_DragDstCellCodes text Drag destination cell codes
ALP_Area_DragDstCol longint Destination area column
ALP_Area_DragDstColCodes text Drag destination column codes
ALP_Area_DragDstProcessID longint 4D’s process ID of the destination area
ALP_Area_DragDstRow longint Destination area row
ALP_Area_DragDstRowCodes text Drag destination row codes
ALP_Area_DragProcessID longint 4D’s process ID of the source area
ALP_Area_DragSrcArea longint The dragged ArealList Pro area
ALP_Area_DragSrcCell longint Source area cell
ALP_Area_DragSrcCellCodes text Drag source cell codes
ALP_Area_DragSrcCol longint The source area column
ALP_Area_DragSrcColCodes text Drag source column codes
ALP_Area_DragSrcRow longint Source area row
ALP_Area_DragSrcRowCodes text Drag source row codes

Configuring Drag and Drop

@ |146

Drag and Drop

Alt/Option key

A default setting that you may want to change is the “drag with Alt key” option.

The default setting for this is that the user must hold down the Alt or Option key to effect a drag. You can turn this off by setting the
ALP_Area_DragOptionKey property for the source area to False - for example:

AL_SetArealLongProperty (ProductList;ALP_Area_DragOptionKey;0) //don’t need alt key to drag

What are access “codes’?

The access codes that are passed in ALP_Area_DragSrcXXXCodes and ALP_Area_DragDstXXXCodes (where XXX is Row, Col
or Cell) are used to enable dragging between specific drag partners.

These drag partners can be the same ArealList Pro area, different AreaList Pro areas, CalendarSet plugin areas, text selections from
4D or other applications and external documents.

m Setting at least one source access code to an area will make it draggable (from the specified object type).

m Setting at least one destination access code to an area will make it droppable (on the specified object type).

Drag and drop between plugin areas

When dragging from and to ArealList Pro or CalendarSet areas (or within the same area) the source of the drag and the target of
the drop are designated as drag and drop partners.

You need to tell ArealList Pro (and CalendarSet if used) what these partnerships are, and to do this you create access codes.

An access code is simply a text code that you create. Let’s say you have a layout that contains two AreaList Pro areas: ProductList
and Selectedltems, and you want to enable items to be dragged from ProductList and dropped onto Selectedltems. You might
decide on the access code “select”.
To enable row dragging you will need two lines of code:

AL_SetAreaTextProperty (ProductlList;ALP_Area_DragSrcRowCodes;"select")

AL_SetAreaTextProperty (Selectedltems;ALP_Area_DragDstRowCodes;"select")

You can list any number of access codes.
For example, suppose you have four AreaList Pro areas on a form - AreaA, AreaB, AreaC and AreaD. You want to allow drag and
drop from AreaA to AreaB or AreaC, and from AreaD to AreaC but not AreaB:
1. Create two access codes: “dropB” and “dropC”.
2. Set the access code properties for the four areas as follows:
AL_SetAreaTextProperty (AreaA;ALP_Area_DragSrcRowCodes;"dropB|dropC")
AL_SetAreaTextProperty (AreaD;ALP_Area_DragSrcRowCodes;"dropC")
AL_SetAreaTextProperty (AreaB;ALP_Area_DragDstRowCodes;"dropB")
AL_SetAreaTextProperty (AreaC;ALP_Area_DragDstRowCodes;"dropC")

Note that the items in the list of codes are separated by a pipe character: “dropB|dropC”

You can specify different codes for cells, rows, and columns.

Note: as opposed to CalendarSet commands where each access code is a parameter by itself: "dropB";"dropC", with ArealList
Pro properties all access codes are passed in the same string (list of codes separated by ‘|’).

What are access “codes”?

http://www.e-node.net/cs

Q.

Drag and Drop

That’s all you need to do to enable basic drag and drop functionality between two areas with default settings.

When a drag and drop takes place, the drag sender’s plugin code communicates its access codes to the drop receiver’s plugin code.
The drop receiver will compare the access codes of the sender to its own codes. If any of the codes match, the drop is allowed.

This mechanism allows a number of combinations between several drag and drop partners.

Note: access codes are strictly compared, taking into account case and diacritics.

Example (one area)
The following is an example of enabling the dragging and dropping of events within the same ArealList Pro area by setting a unique
identifier that only enables dragging within this area.
/lenable drag rows to rows within this area
vSelfStr:="ALParea"+String(eList) //only allows dragging and dropping within this area
AL_SetAreaTextProperty (clList;ALP_Area_DragSrcRowCodes;vSelfStr)
AL_SetAreaTextProperty (eList;ALP_Area_DragDstRowCodes;vSelfStr)

Example (two areas)

Suppose we have a form on which there are two Arealist Pro areas: ProductList contains a list of products, and Selecteditems
contains a list of products that have been selected from the list. We want to allow users to add products to Selecteditems by
dragging rows from ProductList.

We've set up the two areas as described above (under Set the access code properties). Three arrays have been initialised and
added to Selectedltems (atProductPurch, aiQty, and arTotal).

When a product is dropped onto Selectedltems we need to add a row to each of the Selectedltems arrays and fill them with the
appropriate data if the product hasn’t already been selected, or update the arrays if it has already been selected.

In the object method for Selectedltems we call a method called AddProductToOrder:
Case of
: (Form event=0n Drop)
AddProductToOrder (Self)
End case
//AddProductToOrder project method
C_LONGINT($DropArea;$SourceRow;$ProductRow)
$DropArea:=$1->
$SourceRow:=AL_GetAreaLongProperty ($DropArea;ALP_Area_DragSrcRow)
GOTO SELECTED RECORD([product];$SourceRow)
$ProductRow:=Find in array(atProductPurch;[product]product_name)
If ($ProductRow<1)
APPEND TO ARRAY (atProductPurch;[product]product_name)
APPEND TO ARRAY(aiQty;1)
APPEND TO ARRAY (arTotal;[product]retail_price)
Else
aiQty{$ProductRow}:=aiQty{$ProductRow}+1
arTotal{$ProductRow}:=aiQty{$ProductRow}*[product]retail_price)
End if
AL_SetArealLongProperty ($DropArea;ALP_Area_CheckData;0) //tell AreaList Pro we expanded the arrays

What are access “codes”?

@ |148

Drag and Drop

Drag and drop with external objects

External objects are defined in this context as non ArealList Pro (or CalendarSet) plugin areas:

m Dragging from and dropping to 4D fields, variables or any droppable /draggable object

m Dragging from and dropping to 4D text selections (like a text variable content)

m Dragging from and dropping to text selections in other applications (open windows from e.g. a text editor)

m Dragging from external files (no dropping to)

Since external objects obviously don't support access codes they will be potential recipients of any drag from a draggable ArealList
Pro area, or source of any drop to a droppable ArealList Pro area.

Any source access code will make a Arealist Pro area draggable to external objects.

The “_external” special access code must be used as a destination access code in order to make an ArealList Pro area droppable
from external objects:

m “_external” can only be used as a destination access code and is the only way to make an Arealist Pro area accept a drop from
objects other that AreaList Pro or CalendarSet areas

m “_external” as a destination access code means “drop onto this AreaList Pro area from any external object”

We can modify the example above to allow dragging from an external object to area B:
AL_SetAreaTextProperty (AreaA;ALP_Area_DragSrcRowCodes;"dropB|dropC") //drag to B, C and external objects
AL_SetAreaTextProperty (AreaD;ALP_Area_DragSrcRowCodes;"dropC") //drag to C and external objects
AL_SetAreaTextProperty (AreaB;ALP_Area_DragDstRowCodes;"dropB|_external") //accept drop from A & external objects
AL_SetAreaTextProperty (AreaC;ALP_Area_DragDstRowCodes;"dropC") //accept drop from A & D

When dragging from an external object to an ArealList Pro area, the destination type will either be a row or a cell according to the
area's current selection mode (ALP_Area_SelType).

What are access “codes”?

@ |149

Drag and Drop

Using the Event callback method

The processing of the drop event can be handled either in the event callback method or in the On Drop event on the ArealList Pro
area method.

Generally it is best to handle the processing in the On Drop form event.

AL_GetArealongProperty with ALP_Area_AlpEvent is used to find out that a drop occured: in this case, the AL Row drop event,
AL Column drop event, AL Cell drop event or AL Object drop event value tells us that something was dropped onto the area, and
what was dropped (row(s), column, cell(s) or non-AreaList Pro object).

You can also fine-tune your control over the user's drag and drop from the event callback method set by the ALP Area
CallbackMethOnEvent property (callback methods are explained in detail elsewhere):

AL_SetAreaTextProperty (ProductlList;ALP_Area_CallbackMethOnEvent;"AlpEventCallback")

During a drag and drop, this method will be called under two circumstances:

m When a drop is attempted from an external object, while the pointer is still hovering over the Arealist Pro destination area: the
$0 value returned by the callback will allow the subsequent drop action or not (as with setting access codes to control drag and
drop between plugin areas): AL Allow drop event.

m After a drop has been performed, whatever the source was (plugin area or external object): AL Row drop event, AL Column drop
event, AL Cell drop event or AL Object drop event.

Note: the callback method will not be called with AL Allow drop event when the source of the drag and drop is a plugin area,
where access codes are used instead to specifically allow drag and drop between areas.

When the drop is completed, the form method/AreaList Pro area object (or callback method if previously set by ALP Area
CallbackMethOnEvent) is executed. You can then determine what the last user action was using ALP_Area_AlpEvent (form/object
method) or $2 (callback method).

Note: the event reported by ALP_Area_AlpEvent will never be AL Allow drop event for an external object source, but the
callback will receive this event in $2. See “Allow drop” below.

The source area's last event is AL Row drag event, AL Column drag event or AL Cell drag event (drag events). The destination
area's last event is AL Row drop event, AL Column drop event, AL Cell drop event or AL Object drop event.

The drag events are not reported if the drag ended as a drop into the same ArealL.ist Pro area.

Note: AL Row drag event, AL Column drag event and AL Cell drag event drag event should no longer be used anyway. Use
the AL Row drop event, AL Column drop event, AL Cell drop event and AL Object drop event callback events instead, or the
form/object method On Drop 4D event using AL_GetArealongProperty with ALP_Area_AlpEvent.

Using the Event callback method

Q .

Drag and Drop

Allow drop

The callback method is called with the AL Allow drop event event when an external object is dragged over the area. It is used to
allow or reject the drop.

For example:
Case of
: ($2=AL Allow drop event)
$0:=1 //allow

End case

Note: never display a window in the callback while processing this AL Allow drop event, including TRACE or ALERT: 4D would
freeze (ACI0087433).

This event callback method (actually a function in this case) receives six parameters, and must return a result:

m $1 is the destination AreaList Pro area reference.

m $2 is the event, in this case AL Allow drop event

m $0 is expected by ArealList Pro, with a special meaning for this event: 0 (disallow drop) or 1 (allow drop).

Note: if no callback is set the drop from an external object will not be accepted (even when "_external" is set as a destination
access code for the area). Therefore the callback is the only way to allow a drop from an external object on a droppable area.

The pointer shape will depend upon this result:
3
m plus symbol if the drop is allowed: @

m “no entry” sign if the drop is non allowed: ()

Note: once an allowed destination has been rolled over, the pointer will stay as “+” even when you subsequently move to a
place where the drop is not allowed: the drop will nevertheless be allowed and the On Drop form event will be triggered.

This is due to a limitation of 4D, which does not call the plugin again to ask if the drop is allowed unless you leave the area
and re-enter it again.

In this case ALP_Area_DragSrcArea, ALP_Area_DragSrcRow, ALP_Area_DragSrcCol and ALP_Area_DragSrcCell will return
Z€eros.

Using the Event callback method

Q.

Drag and Drop

After the drop

When an item is dropped onto an ArealList Pro area, the following information is available to you:
m Notification that a drop occurred

m Which item was dragged and which type (row, column or cell)

m Where the item was dragged from (this area or another area, or another kind of object)

m The type of data that was the recipient of the drop (row, column or cell)

The processing of the drop event can either be handled in the callback with the AL Object drop event event or the form method /ArealList
Pro area object method with the On Drop event, which is always executed in the context of the destination area/process.The call
sequence is:

1. Callback method with AL Row drop event, AL Column drop event, AL Cell drop event or AL Object drop event in $2

2. Area object method with On Drop form event

3. Form method with On Drop form event

Note: when displaying AreaList Pro in an external window there is no form/object method to execute, therefore the callback is
the only way to control drag and drop in this context.

The callback method receives six parameters as usual, the first two being:
m $1 the destination ArealList Pro area reference.

m $2 the event code, here AL Row drop event, AL Column drop event, AL Cell drop event or AL Object drop event

You can also determine which ArealList Pro object type was dropped using ALP_Area_DragDataType.

To determine which area was the source of the drag, use ALP_Area_DragSrcArea. This property returns the area reference (a long
integer) and ALP_Area_DragProcessID is the process ID of the source area, whether it is the same ArealList Pro area or another
Arealist Pro area, or a CalendarSet area (the area reference will be negative in this case).

To find out which row, column or cell was dropped, use either ALP_Area_DragSrcRow, ALP_Area_DragSrcCol or ALP_Area_DragSrcCell.

The above properties will return a single source row, column or cell. For example ALP_Area_DragSrcRow is the selected row
(ALP_Area_SelRow) at the time the drag was initiated.

If you want to handle multiple rows (ALP_Area_DragRowMultiple +ALP_Area_SelMultiple) or cells as sources, use the Object
Properties with the Objects command theme to retrieve the source area's selection:

ARRAY LONGINT(aRows;0)
Serror:=AL_GetObjects (eList;ALP_Object Selection;aRows) //get the rows selected by user

When dragging to/from another area or a 4D object, that object can either reside in the same window or on another window, which
may require use of 4D’s process communication commands to take action on the drop.

Note: when dragging and dropping to or from other objects, AreaList Pro is only providing a user interface to the drag, and
notifying you, the developer, that the drop has occurred. You are responsible for manipulating any arrays or other data
structures.

See also Reordering after dragging within one area and Dragging to a 4D obiject.

After the drop

Q.

Drag and Drop

Receiving a drop from a non-Arealist Pro Object

As well as dragging between two Areal.ist Pro areas, you can also drag between non-Areal.ist Pro objects and Arealist Pro areas
— for example, an event or a banner from CalendarSet, another 4D object, a text selection in any (drag and drop savvy) application
window or a drop from an external document.

Receiving a drop from a CalendarSet area is identified by ALP_Area_DragSrcArea returning a negative value (opposite of the
CalendarSet area reference) and its process in ALP_Area_DragProcessID.

If the source of the drag is an external object, the callback (if set for the area) will be triggered twice:
m when dragging over the area ($2=AL Allow drop event)

m after the drop ($2=AL Object drop event)

In both cases (and in the 4D object/form method after the drop) ALP_Area_DragSrcArea will be zero and ALP_Area_DragProcess|D
will be:

m the 4D originating object's process if the source is a 4D object

m -1 if the source is a document on disk or another application

Also in both callback calls the content of the dragged and dropped object is the pasteboard data (text, picture and/or other).

Use GET PASTEBOARD DATA to analyze the dragged data and allow the drop (AL Allow drop event) or process it (AL Object drop
event).

Allowing the drop from external objects in the callback

When dragging from non-plugin objects, you can use an event callback method to “catch” the user action and allow it or not (event
callback methods are set with the ALP_Area_CallbackMethOnEvent property). If no callback is set, the drop will be allowed.

In order for external object drag and drop to be disallowed once an area has been made droppable with the "_external" destination
access code, the callback method must be set and handle the AL Allow drop event case.

See the External documents example below.

CalendarSet

The source CalendarSet area is referenced as a negative value in the ALP_Area_DragSrcArea property (opposite of the CalendarSet
area reference).

Plugin area references use sequential numbering: 1 can be AreaList Pro and CalendarSet area references at the same time,
therefore CalendarSet area #1 will be referenced from ArealList Pro's point of view as -1, to differentiate from AreaList Pro area #1.

C_LONGINT($srcArea;$srcCSArea)
If (Form event=0n Drop) //here we use the object method, no callback set

$srcArea:=AL_GetArealLongProperty (elList; ALP_Area_DragSrcArea)

$srcCSArea:=-$srcArea //CalendarSet's area reference (note the minus sign)
If ($srcCSArea=CSappointments) //is this CalendarSet area our appointment calendar?
/I Do something with the appointements
End if
End if

Refer to the CalendarSet manual regarding accepting a drop in a CalendarSet area.

Receiving a drop from a non-ArealList Pro Object

http://www.e-node.net/cs
http://www.e-node.net/ftp/CalendarSet/CalendarSet_Manual.pdf

4D

Q.

Drag and Drop

You can use the following code in the On Drop event when accepting a drop from a 4D object:
DRAG AND DROP PROPERTIES($srcObject;$srcElement;$srcProcess)

Note: $srcObject is Nil if the source 4D object has Automatic Drag enabled. $srcObject is also Nil if it comes from a different

application (or 4D instance).

Then you can use the following code to check what has been dropped:

ARRAY TEXT($4Dsignatures;0)
ARRAY TEXT($nativeTypes;0)
ARRAY TEXT($formatNames;0)

GET PASTEBOARD DATA TYPE($4Dsignatures;$nativeTypes;$formatNames)

Note: the On Drop event code will work correctly after the drop when used in an area’s object method but in an event callback
the form event is zero and drag & drop properties from 4D will not function. However the pasteboard can still be analyzed in the

callback with both events AL Allow drop event and AL Object drop event.

External documents

After Allowing the drop from external objects in the callback, the AL Object drop event AreaList Pro event or the On Drop 4D event

are used to open the document according to the pathname retrieved from the pasteboard, then process it.

Let’'s suppose we want to import some data into a series of arrays by dropping a text file onto an AreaList Pro area. We've saved a
spreadsheet that contains information on some new Nuts products as a tab-delimited text file:

“Macadamia nuts, 50g9” MAC-001
“Macadamia nuts, 100g” MAC-002
“Pecans, 50g” PEC-001
“Macadamia nuts, 100g” PEC-002
“Dry roasted Peanuts 50g” PEA-001

Nuts
Nuts
Nuts
Nuts

Nuts

Snack-sized bag of nuts
Family-sized bag of nuts
Snack-sized bag of pecan nuts
Family-sized bag of pecan nuts

Snack-sized bag of salted, roasted peanuts

2.5
4.5
3.5
5.5

2.5

When this text file is dropped onto a list of products, we want to create a new row for each new product and populate the appropriate

arrays with the product’s details.

Receiving a drop from a non-ArealList Pro Object

Q.

Drag and Drop

Setting up the Area
1. Create a new Arealist Pro area on your form
2. In the Property List, select the Droppable option under the Action topic, and the On Drop event.
3 Create a callback method:
/I AlpEventCallback
C_LONGINT($1) //AreaList Pro object reference
C_LONGINT($2) //ArealList Pro event
C_LONGINT($3) //4D event
C_LONGINT($4) //last clicked column (or column under the pointer for mouse moved event)
C_LONGINT($5) //last clicked row (or row under the pointer for mouse moved event)
C_LONGINT($6) //modifiers
C_LONGINT($0)
Case of
: ($2=AL Allow drop event)
$0:=1 //allow

End case

4. Assign that callback method to the area:
Case of
: (Form event=0On Load)
AL_SetAreaTextProperty (ProductList;ALP_Area_ CallbackMethOnEvent;"AlpEventCallback")
End case

This code can go either on the AreaList Pro destination area object method or in the form method.

Receiving a drop from a non-ArealList Pro Object

Handling the Drop

Add some code to the On Drop event section of the ArealList Pro destination area object method:

Case of
: (Form event=0n drop)
DRAG AND DROP PROPERTIES($srcObject;$srcElement;$srcProcess)
$dragSource:=AL_GetAreaLongProperty (Self->;ALP_Area_ DragSrcArea)
If ($dragSource=0) //not an ArealList Pro area
If (Nil($srcObject)) //external source
GET PASTEBOARD DATA(“com.4d.private.file.url";$data) //gets file pathname
If (OK=1)
PLATFORM PROPERTIES($platform)
If ($platform=Windows)
$LineDelimit:=Char(10)
Else
$LineDelimit:=Char(13)
End if
$path:=Get file from pasteboard(1) //first file
$FileType:=Document type($path)
If ($FileType="txt") | ($FileType="text"))
SET CHANNEL(10;$path) //open the file
While (OK=1) //file opened OK & more data to receive
RECEIVE PACKET($tdata;$LineDelimit) //get one row
ARRAY TEXT (atVals;0)
explode ($tdata;9;->atVals) //parse the text into the array (see below)
If (Size of array(atVals)=5)
APPEND TO ARRAY(atName;Replace string(atVals{1};Char(34);""))
APPEND TO ARRAY (atCode;atVals{2})
APPEND TO ARRAY(atType;atVals{3})
APPEND TO ARRAY (atDesc;Replace string(atVals{4};Char(34);""))
APPEND TO ARRAY (arWprice;Num(atVals{5}))
End if
End while
SET CHANNEL(11) //close the file
SORT ARRAY (atName;atCode;atType;atDesc;arWprice)
AL_SetArealLongProperty (Self->;ALP_Area_CheckData;0)
//tell AreaList Pro we expanded the arrays
End if
End if
End if
End if

End case

10,

Drag and Drop

| 155

5. To test it, load the form and then drop the text file onto the area. The On Drop event will execute and the five new products will be

added to the area.

Receiving a drop from a non-ArealList Pro Object

@ |156

Drag and Drop

Utility
The explode project method splits a delimited line of text into an array:
/l explode
/lexplodes a text string into parts using designated separator character
/land returns them in an array
I/ parameters: $1 = the text string
//$2 = the separation character(ASCII value)
/I $3 = pointer to the array to put the values in
/I supports only TEXT arrays
/larray must be declared and zero'd first
/lexample: explode (tText;9;->atVals))
C_TEXT($text;$char)
Stext:=$1
$char:=Char($2)
$Elements:=0
While (Length($text)>0)

$pos:=Position($char;$text)

If ($pos>0)
$value:=Substring($text;1;$pos-1)
$text:=Substring($text;$pos+1)

Else
$value:=$text
$text:=""

End if

APPEND TO ARRAY($3->;$value)

End while

Receiving a drop from a non-ArealList Pro Object

Q.

Drag and Drop

Hints and Tips

Here is some feedback from our support regarding Drag & Drop in AreaList Pro, which you may find useful in addition to the above
explanations.

Feel free to ask for more using the ArealList Pro/PrintList Pro forum.

Row dragging in cell selection mode

Row dragging isn’t enabled when an Areal.ist Pro object is in cell selection mode.

To set the selection mode, use the ALP_Area_SelType property of AL_SetAreaLongProperty - for example:

AL_SetAreaLongProperty (area; ALP_Area_SelType;0) //selection mode = rows

Dragging a row to the hottom of the list

If you drag a row from another ArealList Pro area and release below the bottom existing row, AL_GetAreaLongProperty with
ALP_Area_DragDstRow will return the last existing row. This behaviour is compatible with versions 8.x.

Dragging “onto” a row means just that: drag onto an existing row.

You can drop a row onto the empty area below the last row (you can also drop data into an empty AreaList Pro area — without any
rows), but the last row is reported as the destination.

You can set the area to “insert” mode:
AL_SetArealLongProperty ($area; ALP_Area_DragRowOnto; 0)

In this case, it will append the row to the list rather than inserting above the last existing row.

Drag Line property

ALP_Area_DraglLine is used when the source (referenced area) does not have the ALP_Area_DragSrcRowCodes property set.
This is also true for ALP_Drop_DragAcceptLine (with the destination area).

It is useless if you call ALP_Area_DragSrcRowCodes to set the matching codes between source and destination. Drag will only be
allowed to a matching destination.

The option key values to ALP_Area_DragLine (1-3 =with option, 4-6 =without option) can be set using ALP_Area_DragOptionKey.

Using ALP_Area DragSrcRowCodes makes it consistent with ALP_Area_ DragSrcColCodes (which in turn makes ALP_Drop
DragAcceptColumn obsolete) and ALP_Area_DragSrcCellCodes.

Drag and drop and compatibility mode

If drag within the area does not work unless the compatibility is turned on, check the AreaList Pro object properties on the 4D form
- it has to be draggable/droppable.

In compatibility mode, the area is draggable/droppable even if it is not marked as such on the 4D form (previous Arealist Pro
versions ignored this setting).

Be aware that Drop has to be handled On Drop, not in the drag context as opposed to previous versions (the drop can end
anywhere, not necessarily in an AreaList Pro area).

Hints and Tips

http://forums.e-node.net/viewforum.php?f=10

Q.

Drag and Drop

Reordering after dragging within one area

Rows

Arealist Pro will automatically reorder the rows (i.e. array elements) if all the following conditions are met.
m drag and drop occurs in the same area
m the area is in arrays mode

m ALP_Area_SelType is 0 (row selection)

m ALP_Area_DragRowOnto is 0 (the feedback to the user is “insert” - highlight between rows) - when using the old v8.x API, you
have to use 0 as the fifth parameter in your call to AL_SetDrgOpts

m ALP_Area_DragRowMultiple or ALP_Area_SelMultiple is O

Otherwise your 4D code must process the drag as in the evtDragWithin method from Example 10.

Column
Only one colum at a time can be dropped within the area or to another destination.

If dropped within the area the dropped colum is moved (inserted) to the target column's position and the columns are automatically
reordered.

If the area is not in compatibility mode the grid order is updated (ALP_Object_Grid).

Note: the above behavior does not apply to Grids where rows include several lines.

Selection mode effects

Keep in mind that the selection mode (as defined by ALP_Area_SelType) may limit the ability to drag and drop depending on the
object types (specified by their access codes).

m specifying column source access codes makes the area draggable: a column can be dragged

m specifying column destination access codes makes the area droppable: a column can be dropped

m specifying row source access codes in cell selection mode does not make the area draggable

m specifying row source access codes in row selection mode makes the area draggable: row(s) can be dragged

m specifying row destination access codes makes the area droppable: row(s) can be dropped; in cell selection mode, only from a
different area (which must be in row selection mode)

m specifying cell source access codes does not make the area draggable when you are in rows mode
m specifying cell source access codes in cell selection mode makes the area draggable: cells(s) can be dragged

m specifying cell destination access codes makes the area droppable: cells(s) can be dropped; if in row selection mode, only from
a different area (which must be in cell selection mode)

Dragging to a 4D object

Suppose you want to drag from AreaList Pro to another 4D object (non-AreaList Pro) and you need to collect information about the
dragged row(s).

Since Arealist Pro simply starts a drag (when allowed), you must handle On Drag Over & On Drop in the 4D object/form method.

Hints and Tips

@ |159

Drag and Drop

You can retrieve the source variable name from DRAG AND DROP PROPERTIES (to know that drag is from an ArealList Pro area)
or you can directly access "net.e-node.alp.object" (which is a longint in native byte order) to get the ArealL.ist Pro area reference.

Then you can get the dragged row number using ALP_Area_DragSrcRow (or selection if multiple-row drag is allowed).

For that to work, the 4D object must be droppable, must have enabled On Drop event and must not handle the drop automatically
(“Automatic Drop” must not be checked).

C_LONGINT ($srcALP)

C_BLOB ($blob)

GET PASTEBOARD DATA ("net.e-node.alp.object";$blob)

If (OK=1)
$srcALP:=BLOB to longint($blob;Native byte ordering)
$row:=AL_GetAreaLongProperty ($srcALP;ALP_Area_DragSrcRow)
/I do something

End if

Disabling Drag and/or Drop with Read-only mode

It it possible to completely prevent dragging from or dropping to an area using the Read-only mode (ALP_Area_ReadOnly property).
The respective bits in this property, if set, will supersede any relevant settings described in this chapter.

See Read-only mode.

See also Drag and Drop from the Upgrading from Previous versions of ArealList Pro section.

Hints and Tips

@

Advanced Topics

Advanced Topics

XML

Every ArealList Pro setting has an XML name, or tag, and you can save an area’s settings into a field or variable which can then be
loaded and applied to any ArealList Pro area.

In this way you can create ArealList Pro “templates” which can be used on various layouts or even transferred to other databases.
See the AL_Load and AL_Save commands for more information about saving and loading XML.

This feature can be very useful if you want to distribute ArealList Pro area settings without having to recompile your application:
simply set up the area the way you want it, save the settings to XML, and send that XML to another user.

Note: not all defined XML tags are saved — only properties that were set to values other than the default values will be included.

You can find a complete list of XML tags in the Property Values, Constants and XML Names section.

It is also possible to set XML values through properties such as ALP_Area XML, ALP_Drop XML, ALP_Column_ XML, ALP_Row XML,
ALP_Row_StyleXML, or ALP_Cell_XML.

Note that the main difference between AL_Load and setting the XML directly is in columns: setting XML does not clear/add columns.

XML

| 160

Data Entry Controls

m |161

Advanced Topics

For certain types of data you may want to provide special controls for display and/or data entry - for example, for Boolean values
you might want to display check boxes; for date data entry, a popup calendar could be useful for the user, and popup menus can

be very useful for entering data from a defined set of values.

ArealList Pro provides the following controls:

Booleans Data Entry

You can choose to display Booleans as check boxes with or without a title, or as radio buttons with the ALP_Column_EntryControl

property:

Constant Get Set Per Type Default Min Max Comments

ALP_Column_EntryControl v v v longint O 0 2

Entry control, depending upon column type
(boolean or integer/long integer)

For boolean columns:

0 = checkbox without title
1 = checkbox with title

2 = radio buttons

For integer/long integer columns:
0 = 2-states checkbox (values 0, 1)
1 = 3-states checkbox (values 0, 1, 2)

(ALP_Column_DisplayControl must be set to 0,
1, 2 or 4 in order to use checkboxes in integer/
long integer columns)

Example 1

To enter the Boolean value in Column 5 via check boxes:
AL_SetColumnLongProperty (area;5;ALP_Column_EntryControl;0)

Example 2

To enter the Boolean value in Column 5 via radio buttons:

First make sure that the column is wide enough to display the radio button labels:
AL_SetColumnRealProperty (area;5;ALP_Column_Width;100)

Then tell ArealList Pro to use radio buttons:
AL_SetColumnLongProperty (area;5;ALP_Column_EntryControl;2)

And finally specify the labels for the radio buttons:
AL_SetColumnTextProperty (area;5;ALP_Column_Format;"Yes;No")

Data Entry Controls

m |162

Advanced Topics

Display

Booleans can be displayed as check boxes (in three sizes) or as custom pictures or text with the ALP_Column_DisplayControl
property of AL_SetColumnLongProperty:

Constant Get Set Per Type Default Min Max Comments

ALP_Column_DisplayControl "4 v v longint -1 -1 4 Display control type:
-1 = default (formatted value)
0 = checkbox without title
1 = small checkbox without title
2 = mini checkbox without title

(0, 1 and 2 are identical on Windows)
3 = mapped through

ALP_Column_PopupArray
+ALP_Column_PopupMap

or ALP_Column_PopupMenu

(these 3 properties have to be defined)

4 = use pictures

(see Displaying custom checkboxes using pictures
from the 4D Picture Library)

Example 1

To display a Boolean as a normal-sized checkbox in column 5:
AL_SetColumnLongProperty (area;5;ALP_Column_DisplayControl;0)

Example 2

To display a Boolean as "Yes" or "No" in column 5:
AL_SetColumnLongProperty (area;5;ALP_Column_DisplayControl;-1)
AL_SetColumnTextProperty (area;5;ALP_Column_Format;"Yes;No")

Dates

There are two options for date controls: inline and popup.

Inline Date Control

An inline date control looks like this:

With this type of control, the user selects an element of the date (ie, the day, month, or year) and clicks the up or down arrows to
increase or decrease the selected value. It will only accept valid dates.

Inline date controls are specified for an entire area with the ALP_Area_UseDateControls property of AL_SetAreaLongProperty -
for example:

AL_SetArealLongProperty (area;ALP_Area UseDateControls;1)

Data Entry Controls

@ .

Advanced Topics

Popup Date Control

A popup date control appears as a little calendar when the data is being edited:

00/00/00

Click on the calendar icon and a calendar opens:

To jump to the current date, click on the middle button.
Choose the date you want to insert by clicking or double-clicking on it.

To specify a popup date control, use the "by popup" option of the ALP_Column_Enterable property - for example. to specify a date
popup for column 6:

AL_SetColumnLongProperty (area;6;ALP_Column_Enterable;2)

Background and foreground colors can be set for all calendar items using the ALP_Area_CalendarColors property.

Note: on Windows, when the window is zoomed, the date & time popups will not resize the window to its normal state.
The popup windows will be modal and a click outside them will be ignored - use ESC to cancel the popup.

An alternate "Windows" look popup date control is available on both platforms when the ALP_Area_CalendarLook property is set
to true (1):

In both cases the entry is ended by a double click on a date, or by the “Esc” key or a click on another object (cancels the entry), or
by any of the keys used to trigger leaving a cell.

The “Del” key will set the date to the Null value (100/00/00!) and dismiss the popup.

Data Entry Controls

m |164

Advanced Topics

Time

As with dates, there are two types of control you can use with time data: inline and popup.

Inline Time Control

An inline time control looks like this when the data is being edited:

Select the value you want to change (hours or minutes) and click the up or down arrows to choose the required value. You can also
enter the data manually - you won'’t be allowed to enter invalid values.

To specify a time control, use the ALP_Area_UseTimeControls property - for example:

AL_SetArealLongProperty (area;ALP_Area_UseTimeControls;1)

Note: this property applies to the entire area, not individual columns.

Popup Time Control

When you specify a popup time control, a little alarm clock icon appears in each cell in the column:
0 &

Click on the clock to open the popup time selector:

Choose the hour from the first two columns, and the minutes from the third column. You can also enter the time manually.

To specify a popup time control, use the "by popup" option for the ALP_Column_Enterable property - for example, to specify a
popup time control for column 7:

AL_SetColumnLongProperty (area;7;ALP_Column_Enterable;2)

The entry is ended by a double click on a hour or minute button, by the “Esc” key or a click on another object (cancels the entry),
or by any of the keys used to trigger leaving a cell.

The “Del” key will set the time to the Null value (?00:00:00?) and dismiss the popup.

Data Entry Controls

@ .

Advanced Topics

Popup Menus

To create a popup menu and associate it with a column in your Areal.ist Pro area, you create an array containing the required values
and then associate that array with the appropriate column. For example, let’'s say we want to provide four options to choose from
in a "Types" column.
First, create the array of values:

ARRAY TEXT(atTypes;4)

atTypes{1}:="Chips"

atTypes{2}:="Chocolate"

atTypes{3}:="Nuts"

atTypes{4}:="Toffees"

Next, tell AreaList Pro that we want to allow data entry by popup only:
AL_SetColumnLongProperty (area;1;ALP_Column_Enterable;2)

Finally, assign the array to the popup:
AL_SetColumnPtrProperty (area;1;ALP_Column_PopupArray;->atTypes)

Hierarchical Popup Menus

You can also use hierarchical popup menus - for example:

Hierarchical popup menus use 4D menus which you create using the Create menu command. As an example we will look at how
the example shown above was created.

Each menu item must have a menu item parameter defined: this value will be returned to AreaL.ist Pro and stored in the data when
the user selects an item from menu.

Data Entry Controls

First we create three menus: the main ("parent" menu) and two submenus (Chocolate and Nuts):

$hpopup:=Create menu
$subChoc:=Create menu

$subNuts:=Create menu

Next, we populate the two submenus:
APPEND MENU ITEM($subChoc;"Dark")
SET MENU ITEM PARAMETER($subChoc;-1;"Dark")
APPEND MENU ITEM($subChoc;"Milk")
SET MENU ITEM PARAMETER($subChoc;-1;"Milk")
APPEND MENU ITEM($subChoc;"White")
SET MENU ITEM PARAMETER($subChoc;-1;"White")
APPEND MENU ITEM($subNuts;"Brazil")
SET MENU ITEM PARAMETER($subNuts;-1;"Brazil")
APPEND MENU ITEM($subNuts;"Macadamia")
SET MENU ITEM PARAMETER($subNuts;-1;"Macadamia")
APPEND MENU ITEM($subNuts;"Mixed")
SET MENU ITEM PARAMETER($subNuts;-1;"Mixed")

Add the two submenus to the parent menu:
APPEND MENU ITEM($hpopup;"Chocolate";$subChoc)
APPEND MENU ITEM($hpopup;"Nuts";$subNuts)

Tell AreaList Pro to apply this menu to column 1 and make it enterable by popup only:
AL_SetColumnLongProperty (area;1;ALP_Column_Enterable;2)

AL_SetColumnTextProperty (area;1;ALP_Column_PopupMenu;$hpopup)

and, finally, tell AreaList Pro to map the data to the menu titles:
AL_SetColumnLongProperty (area;1;ALP_Column_DisplayControl;3)

@

Advanced Topics

Data Entry Controls

| 166

m |167

Advanced Topics

Grids

In addition to displaying fields and arrays in a spreadsheet-style “row and column” layout, AreaL.ist Pro version 9 also enables you
to display your data in grids.

Think of a grid as a table within a row (that’s “table” in the sense of tabular data, not a database table). This gives you many more
ways to present your data.

As an example, compare these two ArealList Pro areas:

Product Type |Name Price Description
® Chocolate Dark Chocolate 2.50 Better for you: dark chocolate has been sh
> | Chocolate Milk Chocolate 2.75 Made with full-fat, organic milk.
; Chocolate White chocolate 2.50 The chocolate purist might argue that it's
| MNuts Muts 2.25 An assortment of peanuts, cashew nuts, el
I-I E = - P — e ra - 3
Type
Name Description
Price
' Chocolate Better for you: dark chocolate has been shown
Dark Chocolate to have healthy qualities. How many more
5 g reasons do you need?
%, Chocolate Made with full-fat, organic milk.
el
773 .
= Milk Chocolate
S 2.75
Chocolate The chocolate purist might argue that it's not
White chocolate really chocolate - but who cares?
2.5
Muts An assortment of peanuts, cashew nuts, etc.
Nuts Supplied in a decorative blue and red tin.
2.25

They both display the same data, but in very different ways.

Grids

m |168

Advanced Topics

Terminology

We refer to the parts of a grid as:

line: A field or array that has been added to the area; equivalent to a column in a list view
row: The group of lines that are displayed for each record.

column: A column, which may contain any number of lines.

cell: The intersection of a column and a line.

column

| IDescription
,| IN%rice line .
' Chocolate ine Better for you: dark chocolate has been shown |

;Dark Chocolate Hidvdhave healthy qualities. How many more
2 g [reasons do you need? i

Chocolate

Milk Ch¢blate

ade with full-fat, organic milk. ow

The grid allows you to:
m Specify how lines are grouped into columns.

m Span data across two or more lines, either vertically or horizontally. In this example, the Description field spans the Type, Name,
and Price lines, allowing the text to wrap within its cell.

Hide any line.
m Allow lines to be dragged and dropped.

m Allow the user to sort on any line.

When a column is added or removed, the grid is destroyed.

Any column can be made invisible. Then,

m When in compatibility mode, the grid is destroyed, all columns are made visible, and all columns to be hidden are made invisible

m When no grid is defined by the user (after last destruction), it is created automatically from all visible columns

m When a grid is defined by the developer, it is used and visibility of the columns is modified accordingly.

If you are familiar with how HTML tables are created, a grid works in much the same way (in fact grids are stored as HTML in the
area’s XML data).

Grids

(Il |W9

Advanced Topics

Creating a Grid

To create a grid you first add the fields or arrays to the area in the same way as for a list view, and then you tell AreaList Pro how
to organise those columns into the grid.

Building the Grid Array

The grid array is a two-dimensional array that describes how the lines are organised into cells and columns. The first dimension of
the array must be 3, and the second dimension will be the number of lines x the number of columns.

The First Dimension

The three elements of the first dimension of the array represent:

1. Line: which data column will be displayed in the line

2. Horizontal span: how many horizontally adjacent cells the data can span

3. Vertical span: how many vertically adjacent cells the data can span

The Second Dimension
The second dimension of the array contains the relevant values: one element for each line.

In our example there will be 6 elements in the second dimension - 2 columns x 3 lines:

Type Description

Name

Price

The array declaration, therefore, will be:

ARRAY LONGINT($aiGrid;3;6)

Filling the Array
The first dimension of the array contains the column numbers that will comprise our lines. They are filled from left to right and top
to bottom:

$aiGrid{1{1}:=1 //Type: the 1% column that was added to the area

$aiGrid{142}:=4 //Description: the 4" column that was added to the area

$aiGrid{1{3}:=2 //Name: the 2" column that was added to the area

$aiGrid{145}:=3 //Price: the 3™ column that was added to the area

This could be visually represented in this way:

$aiGrid{1}{1} $aiGrid{1}{2}
$aiGrid{1}{3}
$aiGrid{1}{5}

The second and third dimensions specify the row and column spans. Most of these values will be 1, so we can populate the arrays easily:
For ($i;1;6)
$aiGrid{2}{$i}:=1 //column span
$aiGrid{3K$i}:=1 //row span
End for
We want column 2 (the description) to span 3 lines:
$aiGrid{3K2}:=3 //row span

Grids

m |170

Advanced Topics

Creating the Grid

Finally, we instruct ArealList Pro to create a grid from our two-dimensional array:
AL_SetArealLongProperty (area;ALP_Area_ColsInGrid;2) //2 columns in the grid
$err:=AL_SetObjects (area;ALP_Object_Grid;$aiGrid) //Assign the array to the grid

Example

To illustrate how this works we’ll look at the code that creates the example shown above.
1. Find the records we want to display, and sort them:

ALL RECORDS([product])

ORDER BY ([product];[product]product_type;[product]product_name)

2. Add the four columns to the area:
ARRAY LONGINT($aPtr;4)
$aPtr{1}:=->[product]product_type
$aPtr{2}:=->[product]product_name
$aPtr{3}:=->[product]retail_price
$aPtr{4}:=->[product]description
Serr:=AL_SetObjects (area;ALP_Object_Columns;$aPtr)

3. Set the attributes for the columns (area, column, width, header text, footer text, format, attributed, calculate height, enterability, bold):
AL_SetColumn (area;1;0;"Type";"";"";False;False;0;True)
AL_SetColumn (area;2;0;"Name";"";"";False;False;0;False)
AL_SetColumn (area;3;0;"Price";"";"";False;False;0;False)
AL_SetColumn (area;4;300;"Description";"";""; True;True;1;False)
AL_SetColumn method:

C_LONGINT($1;$2) //alp, column

C_REAL($3) //width

C_TEXT($t;$4;$5;$6) //header, footer, format

C_BOOLEAN($7;$8;$10) //attributed, height, bold

C_LONGINT($9) //enterability

AL_SetColumnRealProperty ($1;$2;ALP_Column_Width;$3)
AL_SetColumnTextProperty ($1;$2;ALP_Column_HeaderText;$4)
AL_SetColumnTextProperty ($1;$2;ALP_Column_Format;$6)
AL_SetColumnLongProperty ($1;$2;ALP_Column_Attributed;Num($7))
AL_SetColumnLongProperty ($1;$2;ALP_Column_CalcHeight;Num($8))
AL_SetColumnLongProperty ($1;$2;ALP_Column_Enterable;$9)
AL_SetColumnLongProperty ($1;$2;ALP_Column_StyleB;Num($10))
AL_SetColumnLongProperty ($1;$2;ALP_Column_HdrStyleB;Num($10))

Grids

@ ..

Advanced Topics

4. Create a two-dimensional array that describes how the lines are organised into cells and columns:
ARRAY LONGINT($aiGrid;3;6)
For ($i;1;6)
$aiGrid{2}{$i}:=1 //column span
$aiGrid{3K$i}:=1 //row span
End for
$aiGrid{1{1}:=1 //column number
$aiGrid{1X2}:=4 //column number
$aiGrid{1{3}:=2 //column number
$aiGrid{1}45}:=3 //column number
$aiGrid{342}:=3 //line span: Description spans 3 lines

5. Create the grid:
AL_SetArealLongProperty (area;ALP_Area_ColsInGrid;2)
Serr:=AL_SetObjects (area;ALP_Object Grid;$aiGrid)

6. Do a bit of formatting:
AL_SetArealLongProperty (area;ALP_Area_AltRowOptions;1) //alternate row background ("zebra" style)

AL_SetArealLongProperty (area;ALP_Area_ShowFooters;0) //don’t show footers

AL_SetArealLongProperty (area;ALP_Area_SelMultiple;1) //select multiple rows

AL_SetAreaLongProperty (area;ALP_Area_AllowSortEditor;1) //allow sort editor

AL_SetColumnLongProperty (area;4;ALP_Column_Wrap;1) //4th column wraps long text

AL_SetArealLongProperty (area;ALP_Area_ShowRowDividers;1) //show row dividers

AL_SetArealLongProperty (area;ALP_Area_NumRowLines;0) //variable row height

AL_SetArealLongProperty (area;ALP_Area_EntryClick;2) //enterable by double-click

Re-ordering Rows in a Grid

You can allow users to re-order the rows in a grid using drag and drop - but you need to manage the re-displaying of the grid after
a row has been moved.

Grids

@ ..

Advanced Topics

Grid Properties

Following is a list of the properties specifically for use with grids.

Area Properties

These properties are used with the commands in the Area theme. Grid cell numbers start at 1 and go from left to right and from top
to bottom in the grid - for example:

1

4

Constant Get Set Per Type Default Min Max Comments

ALP_Area_ColsInGrid v v v longint -1 -1 Number of columns in grid

ALP_Area_ColsLocked v v v longint 0 0 Number of locked columns in grid

ALP_Area_RowsInGrid v v v longint 1 -1 20 Number of rows in grid

ALP_Area_EntryGotoGridCell v v long int Grid cell number to start entry in (cell in grid, not
column number)

ALP_Area_EntryGridCell v long int Grid cell number of edited cell

ALP_Area_EntryPrevGridCell v long int Previously edited grid cell number

Column Properties

These properties are used with commands in the Columns theme.

Constant Get Set Per Type Default Min Max Comments

ALP_Column_FindCell v v v long int Find the first grid cell number showing data from
the column

ALP_Column_FromCell v long int Get the column number from the grid cell number

Object Properties
These properties are used with commands in the Objects theme.

Constant Get Set Array Type Comments

ALP_Object_FooterTextNH v v text Footer text of visible columns in grid order

ALP_Object_Grid v long int Column numbers

Use a 2D array to access colSpan & rowSpan, too

Grids

m |173

Advanced Topics

Hierarchical Lists

Hierarchical lists are an excellent way to display data that is organised into groups and sub-groups. Consider these two examples:

|Product Type |Name Price :DE5:ripticn
o | Chocolate Dark Chocolate 2.50 Better for you: dark chocolate has been ¢
‘-E' Chocolate Milk Chocolate 2.75 Made with full-fat, organic milk.
+ | Chocolate White chocolate 2.50 The chocolate purist might argue that it"
b Muts Muts 2.25 An assortment of peanuts, cashew nuts,
e
2 e e o e A .: oy -:..:....- A b o o o R
‘_E- i Type ‘Name Description o]
+w " Chocolate
= Nuts
8 F Toffee
=
e
]
T
-2 3
= .

In the second example, the data has been organised into hierarchical lists. You can click on a triangle to expand a list - for example:
Type
¥ Chocolate

N A P A B T A S A

IName |Description [

Dark Chocolate Better for you: dark chocolate has b
Milk Chocolate Made with full-fat, organic milk.
White chocolate The chocolate purist might argue th

¥ Nuts

Cashew Nuts Roasted and salted cashew nuts in :
: Nuts An assortment of peanuts, cashew r
» Toffee
| '3 : : . 1A |e

Hierarchical Lists

@ ..

Advanced Topics

How to create a Hierarchical List

Hierarchical lists consist of normal AreaL.ist Pro columns (from arrays or fields) plus two additional arrays which specify the hierarchy
level and the expansion status of each row.

Hierarchy Level

The hierarchy level is an integer where the top level =0 and successive levels are 1 more. So, in a three-level hierarchy you'll have
level numbers 0, 1, and 2.

Expansion status
The expansion status is either 1 or 0: 0 means collapsed (closed) and 1 means expanded.

Here is a simple example to illustrate the way the two additional arrays work:

Data column 1: Data column 2: Hierarchy level Expansion status
Product type Product name array array
Chocolate 0 1
Milk chocolate 1 0
Dark chocolate 1 0
Nuts 0 1
Cashews 1 0
Pecans 1 0

The hierarchical list is initiated by calling the AL_SetObjects2 command with the ALP_Object_Hierarchy parameter, the hierarchy
level array, and the expansion status array:

$err:=AL_SetObjects2 (arca;ALP_Object_Hierarchy;$ailevel;$aiExpanded)

Alternatively, you can call AL_SetObjects with a two-dimensional array.

Example
In this example, we are going to create the hierarchy shown at the beginning of this topic.
We have a number of product records which each have a Product Type selected (Chocolate, Nuts, etc.).

We will need to:
1. Select the records to include

2. Sort them first by Type and then by Product Name

Hierarchical Lists

m |175

Advanced Topics

3. Build the Hierarchy Level array, inserting elements into the arrays for each product type break.
/I Select the records, sort them, and copy them into arrays:
ALL RECORDS([product])
ORDER BY ([product];[product]product_type;[product]product_name)

SELECTION TO ARRAY ([product]product_type;atType;[product]product_name;atName;
[product]description;atDescription;[product]retail_price;arPrice)

/IAdd columns to the ArealList Pro area:
Serr:=AL_AddColumn (area;->atType)
$err=AL_AddColumn (area;->atName)
$err:=AL_AddColumn (area;->atDescription)
$err=AL_AddColumn (area;->arPrice)

/I Create the hierarchy level array. It is initially 1 element bigger than the (current) size of the Product arrays, because we know
that the first row will be the first top-level entry in the hierarchy:

ARRAY LONGINT($aiLevel;Size of array(atType)+1)
/llnsert an empty element at the beginning of each of the Product arrays:
INSERT IN ARRAY (atType;1;1)
INSERT IN ARRAY (atName;1;1)
INSERT IN ARRAY (atDescription;1;1)
INSERT IN ARRAY (arPrice;1;1)
/I Set up the first row:
$Stype:=atType{2} //$type will tell us when the type changes
atType{1}:=$type //Set the first level topic
$i:=2 //Start the loop at the second row
/lLoop through the product arrays, inserting elements when the Type changes:
While ($i<=Size of array(atType))
If (atType{$i}=%type) //same type as the previous row
$aiLevel{$i}:=1
atType{$i}:="" //don’t need to redisplay the type
Else
$type:=atType{$i} //reset the type variable
INSERT IN ARRAY ($aiLevel;$i;1)
INSERT IN ARRAY (atType;$i;1)
INSERT IN ARRAY (atName;$i;1)
INSERT IN ARRAY (atDescription;$i;1)
INSERT IN ARRAY (arPrice;$i;1)
atType{$i}:=$type //this is the level 1 row
$aiLevel{$i}:=0 //not strictly necessary, as it will default to 0
$aiLevel{$i+1}:=1
atType{$i+1}:=""
$i:=9i+1
End if
$i:=8i+1
End while

Hierarchical Lists

@ ..

Advanced Topics

Il Create the expansion status array:

ARRAY LONGINT($aiExpanded;Size of array($aiLevel)) //0 = not expanded
/I Set the hierarchy:

$err:=AL_SetObjects2 (area;ALP_Object_Hierarchy;$ailevel;$aiExpanded)

/I Set the column headers:

AL_SetColumnTextProperty (area;1;ALP_Column_HeaderText;"Type")

AL_SetColumnTextProperty (area;2;ALP_Column_HeaderText;"Name")

AL_SetColumnTextProperty (area;3;ALP_Column_HeaderText;"Description")
AL_SetColumnTextProperty (area;4;ALP_Column_HeaderText;"Price")

/I Finally, apply some formatting:
AL_SetArealLongProperty (area;ALP_Area_AltRowOptions;1) //alternate row background

Hierarchical List Properties

The following properties are specifically for use with hierarchical lists.

Area Properties

These properties are used with the commands in the Area theme.

Constant Get Set Per Type Default Min Max Comments

ALP_Area_ArrowsForHierarchy v v bool 0 When hierarchy is displayed, left/right arrow keys
(without command key) are used to collapse/
expand nodes, not for horizontal scrolling

ALP_Area_Hierindent v v v real 16 0 64 Indent increment for every hierarchy level (for
use with hierarchical lists)

Hierarchical Lists

Row Hierarchy Properties

These properties are used with commands in the Rows theme.

@

Advanced Topics

| 177

Constant Get Set Per Type Default Min Max Comments
ALP_Row_Collapse v v bool Collapse this row (all children will be invisible)
ALP_Row_CollapseAll (4 bool “Deep collapse”: collapse this row and all
its children (all children will be invisible and
collapsed)
ALP_Row_Expand v v bool Show children of this row
If any child was not collapsed, more levels will be
visible
ALP_Row_ExpandAll v bool «Deep expand»: show children of this row and
all children (all children will be visible and fully
expanded)
ALP_Row_Level v long int Returns the level associated with this row
(set using ALP_Object_Hierarchy)
ALP_Row_Parent v long int Returns the immediate parent of this row
(zero if this row is at the top level)
ALP_Row_Visible v bool Returns whether this row is visible (all parents of

this row are expanded)

This has nothing to do with real visibility on screen,
but with the expanded state of all parents

Object Properties

This property is used with commands in the Objects theme.

Constant

Get

Set

Array Type

Comments

ALP_Object_Hierarchy

v

v

long int

Hierarchy: level, expanded

2D or two arrays: you can call AL_SetObjects with a
2-dimensional array

or AL_SetObjects2 with two arrays

Hierarchical Lists

@ ..

Advanced Topics

Pictures

Images can be displayed as icons in cells and in headers and footers, and they can be set either on the left or the right of the cell.
The pictures can be stored in variables, fields, or the 4D picture library.

Various settings can be applied to an icon through the use of flags - for example, scaling, offset from the border, etc.

Formatting picture columns

Arealist Pro uses constants for picture alignment. They are identical to previous Arealist Pro versions:

Constant Value

AL Truncated upper left

0
AL Truncated centered 1
AL Scaled to fit 2
3
4

AL Scaled proportional

AL Scaled prop centered

For instance, to set the format of a picture column to be “scaled to fit prop centered”, use
AL_SetColumnTextProperty (area;$columnindex;ALP_Column_Format;"4")

m format 0 is "Truncated" — the picture is always aligned, e.g. if the picture is bigger, you should see the right side of the picture
for a right-aligned picture

m format 1 is "Truncated (centered)" — the picture is always centered, which is the same as format 0 with horizontal and vertical
alignment set to centered (2)

m format 2 is "Scaled to fit" — it always covers the full cell, there is nothing to align

m format 3 is "Scaled proportionally" — if the picture is smaller than the cell (after scaling the picture), it will be aligned

format 4 is "Scaled proportionally (centered)" — the picture is always scaled and centered, which is the same as format 3 with
horizontal and vertical alignments set to centered (2)

In addition:

m if the value set for ALP_Column_Format is not specified or out of range, it will be interpreted as 0

m formats 1 and 4 are always centered, format 2 fills the whole rectangle

m only formats 0 and 3 will use the justification if any was set with one of the alignment properties
(ALP_Column_HorAlign, ALP_Row_HorAlign, ALP_Cell_HorAlign, ALP_Column_VertAlign),
default alignment is top left for these two formats

These alignement properties should not be confused with the icon flags (see below).
AL_SetCellLongProperty (...;ALP_Cell_LeftlconFlags;AL Icon Flags Scaled)

is related to pictures (icons) embedded into a cell (in any kind of column), not for column data as such.

Using a picture from a field or variable

To display an image stored in a variable or field, you call AL_Setlcon. AL_Setlcon accepts the area reference (or zero for global
workstation settings), an image ID (which you create), and the image. The ID must be a positive number between 1 and 16,777,215.

You can then use the image ID to set the value of the ALP_Cell_LeftlconID / ALP_Cell_RightlconID properties.

Pictures

@ ..

Advanced Topics

Using a picture from the 4D Picture Library

To use a picture from the 4D Picture Library, you pass the appropriate 4D Library picture reference to ALP_Cell_LeftlconID/ ALP_Cell_
RightlconID.

The picture will be automatically added to AreaList Pro’s picture library (cache) if not already there.

Displaying custom checkhboxes using pictures

The ALP_Column_DisplayControl property can be set to 4 meaning “draw pictures”.

Boolean, Integer and Long integer arrays/fields can be shown as pictures.

Set the format (ALP_Column_Format) to "TruelD;FalselD" or "TruelD;FalselD;MixedID" for 3-state entry, as controlled by ALP _
Column_EntryControl: 1 means use 3-state (same as when drawing native checkboxes).

If the picture is not present in AreaList Pro’s cache (has not been set by AL_Setlcon), Arealist Pro tries to get it from the 4D’s picture
library. If the respective picture ID in the format is not present (or is zero), nothing will be drawn.

For example, "12345" will draw picture 12345 for True/1 and nothing otherwise and ";4321" will draw picture 4321 for False/0 and
nothing otherwise.

Flags
Flags can be used to set various properties for the icons, such as offset, scaling, and alignment.

Icons are loaded from ArealList Pro’s picture library (a.k.a. picture cache, populated with AL_Setlcon) or from 4D’s Picture library
(with ALP_Cell_LeftlconIlD/ ALP_Cell_RightlconID)

The following flags can be used with the ALP_Cell_LeftlconFlags or ALP_Cell_RightlconFlags properties:

Flag Description
offset/width A number between 0 - 255
Offset from the cell border in points, or icon width (depending on the horizontal position)
See Alignment and offset
horizontal position 0 - default position (left for left icon, right for right icon)
256 - AL Icon Flags Horizontal Left - Align on the left
512 - AL Icon Flags Horizontal Center - Horizontally centered
768 - AL Icon Flags Horizontal Right - Align on the right

vertical position 0 - default position (top)
1024 - AL Icon Flags Vertical Top - Align top
2048 - AL Icon Flags Vertical Center - Vertically centered
3072 - AL Icon Flags Vertical Bottom - Align bottom

scaling 0 - default (trimmed) - Picture is displayed trimmed to row height.

4096 - AL Icon Flags Scaled - Picture is displayed scaled to fit to the height of the row (height of the
icon is defined by height of the row and picture is proportionally scaled)

mask AL Icon Flags Horizontal Mask
AL Icon Flags Vertical Mask
AL Icon Flags Offset Mask

Masks are used to extract a partial value from a combined value. For example, if you want to extract
the offset from the value (received with a getter) you will do:

$flags:=AL_GetCellLongValue(area; ALP_Cell_LefticonFlags)
offset:=$flags & AL Icon Flags Offset Mask

Pictures

Examples

Example 1

Get a picture of a dollar sign from a field and display it in the header row for the Price column:
C_PICTURE($pPict)
QUERY ([pictures];[pictures]picturename="dollar")
$pPict:=[pictures]pic
Serr:=AL_Setlcon (area;20;$pPict) //add picture to the ArealList Pro picture library/cache with ID = 20
AL_SetCellLongProperty (area;0;3;ALP_Cell_LeftlconlD;20) //add icon to column 3 in the header

Example 2
Using a picture from the 4D picture library:

To display a picture from the 4D Picture Library, you simply need to pass the Picture Library ID number:
AL_SetCellLongProperty (area;0;3;ALP_Cell_LeftlconID;2072) //use picture no. 2072

Example 3

m |180

Advanced Topics

Set the header row to a height of 40 points and display an icon in the third column; center the icon horizontally and position it at the

bottom of the cell:
C_PICTURE($pPict)
QUERY (([pictures];[pictures]picturename="dollar")
$pPict:=[pictures]pic
Serr:=AL_Setlcon (area;20;$pPict)
AL_SetCellLongProperty (area;0;3;ALP_Cell_LeftlconlD;20)
$flags:=AL Icon Flags Horizontal Center+AL Icon Flags Vertical Bottom
AL_SetCellLongProperty (area;0;3;ALP_Cell_LeftlconFlags;$flags)

Example 4

Set an offset of 5 points from the cell border for column 3’s header:
AL_SetCellLongProperty (area;0;3;ALP_Cell_LeftlconFlags;5)

Example 5

Display 3-state custom checkboxes from pictures in a long integer column:
Serr:=AL_Setlcon (area;33;3pPictYes) //set picture for the True value with ID = 33
Serr:=AL_Setlcon (area;34;$pPictNo) //set picture for the False value with ID = 34
Serr:=AL_Setlcon (area;35;3pPictMaybe) //set picture for the Mixed value with ID = 35
AL_SetColumnLongProperty (area;3;ALP_Column_EntryControl;1) //use three-state entry
AL_SetColumnLongProperty (area;3;ALP_Column_DisplayControl;4) //display pictures
AL_SetColumnTextProperty (area;3;ALP_Column_Format;"33;34;35") // specify column format

Note: if AL_Setlcon is not called, AreaList Pro will look for pictures ID 33, 34 and 35 from 4D’s picture library.

Pictures

Alignment and offset

Arealist Pro uses a specific offset/width implementation for icon drawing.

Offset

m |181

Advanced Topics

When horizontal alignment in ALP_Cell_XXXlconFlags is zero (default position : left for left icon, right for right icon), the low 8 bits
(offset/width) of ALP_Cell_XXXlIconFlags are interpreted as the offset, i.e. the distance in points between the text and the icon (left

or right):

| < offset= |

| Text

| < offset= |

Text! |

0 - default position (left for left icon, right for right icon)

Width

Otherwise the low 8 bits (offset/width) of ALP_Cell_XXXlconFlags are interpreted as the point width that the icon will use - the icon
will be aligned in this space:

| ~width - | | - width - |

Text Text! |
| | |

512 - AL Icon Flags Horizontal Center - Horizontally centered

Example

C_LONGINT(vIiconOffset;viconHPos;vlconVPos;vlconFmt;viconID;vlconWidth)

viconID:=11

viconOffset:=3

viconFmt:=0 //AL Icon Flags Scaled

viconHPos:=0 //default alignment

viconVPos:=AL Icon Flags Vertical Center

AL_SetCellLongProperty ($area;3;7;ALP_Cell LeftlconID;viconID)

AL_SetCellLongProperty ($area;3;7;ALP_Cell_LeftlconFlags;viconOffset | viconFmt | viconHPos | viconVPos)
AL_SetCellLongProperty ($area;3;7;ALP_Cell_RightlconlID;viconID)

AL_SetCellLongProperty ($area;3;7;ALP_Cell_RightlconFlags;viconOffset | viconFmt | viconHPos | viconVPos)
viconWidth:=40

viconHPos:=AL Icon Flags Horizontal Left

AL_SetCellLongProperty ($area;4;7;ALP_Cell_LefticonID;viconID)

AL_SetCellLongProperty ($area;4;7;ALP_Cell_LeftlconFlags;viconWidth | viconFmt | viconHPos | viconVPos)
viconHPos:=AL Icon Flags Horizontal Right

AL_SetCellLongProperty ($area;4;7;ALP_Cell_RightlconID;viconID)

AL_SetCellLongProperty ($area;4;7;ALP_Cell_RighticonFlags;viconWidth | viconFmt | viconHPos | viconVPos)

viconHPos:=AL Icon Flags Horizontal Center

Pictures

m |182

Advanced Topics

AL_SetCellLongProperty ($area;5;7;ALP_Cell_LefticonID;viconID)

AL_SetCellLongProperty ($area;5;7;ALP_Cell_LeftlconFlags;viconWidth | viconFmt | viconHPos | viconVPos)
AL_SetCellLongProperty ($area;5;7;ALP_Cell_RightlconID;viconID)

AL_SetCellLongProperty ($area;5;7;ALP_Cell_RightlconFlags;viconWidth | viconFmt | viconHPos | viconVPos)
viconHPos:=AL Icon Flags Horizontal Right

AL_SetCellLongProperty ($area;6;7;ALP_Cell LeftlconID;viconID)

AL_SetCellLongProperty ($area;6;7;ALP_Cell_LefticonFlags;viconWidth | viconFmt | viconHPos | viconVPos)

viconHPos:=AL Icon Flags Horizontal Left
AL_SetCellLongProperty ($area;6;7;ALP_Cell_RightlconID;viconID)
AL_SetCellLongProperty ($area;6;7;ALP_Cell RighticonFlags;viconWidth | viconFmt | viconHPos | viconVPos)

Here is the resulting display for rows 3-6:

Displaying custom pictures instead of ArealList Pro's native icons

Arealist Pro's native icons for popups and hierarchical lists can be replaced with your own custom pictures.

Setting custom icons

This is performed through the AL_Setlcon command: if the referenced icon is present in AreaList Pro’s global picture library/cache
(set by AL_Setlcon with area reference = 0), it will be used, superseding internal icons (popups, hierarchical list triangles) and per-
area picture library/cache (set by AL_Setlcon with specified area reference).

Note: currently the replacement for internal icons must match the size. This will be enhanced in future releases.

Internal icon IDs and widths

Use the following values in the iconID parameter of AL_Setlcon in order to use your own pictures.
m | | Generic popup on MacOS : ID = 1, width = 5

m 1 Generic popup On Windows: ID = 1, width =7

n Date popup : ID = 2, width = 15

m | Time popup : ID = 3, width = 16

m [|HL node right: ID = 4, width = 9

m [JHL node down: ID = 5, width =9

Pictures

m |183

Advanced Topics

Value Mapping

Value Mapping is a way to map one set of values to another for display purposes. Suppose that each record in your database has
a numeric value stored in a field.

This numeric value is meaningful to your program, but meaningless to a human: it would be much more useful for the user to know
what those numeric values actually mean.

One way to handle the problem would be to create a new text array, loop through all the records (or array elements), and populate
the text array according to the values found in the numeric array. Value mapping is a much more efficient way to handle the situation.

Arealist Pro needs two sets of values: one set of values that are compared to values stored in a field or array, and another set of
values that are displayed in the column.

In the case of two arrays, stored values are looked up in the array passed in ALP_Column_PopupArray property and displayed
values are from the ALP_Column_PopupMap array.

In the case of ALP_Column_PopupMenu, stored values are looked up in menu item parameters and displayed values are menu
titles.

The column that uses mapping does not need to be enterable by popup.

The best way to create a value map is using a combination of the ALP_Column_PopupArray and ALP_Column_PopupMap
properties. Both properties are persistent, and the mapping is done directly in AreaList Pro; AreaList Pro creates a 4D menu for the
popup, which is accessible though ALP_Column_PopupMenu (which is not persistent)

Another way is to use a developer-supplied 4D Menu. In this case, AreaList Pro has to call 4D to get the elements of the menu to
find the valueftitle pairs. Using this method, you can make it hierarchical.

Example 1: Mapping using 4D’s menu
<>mMenu:=Create menu
APPEND MENU ITEM(<>mMenu;"Area")
SET MENU ITEM PARAMETER(<>mMenu;1;"1")
APPEND MENU ITEM(<>mMenu;"Column")
SET MENU ITEM PARAMETER(<>mMenu;2;"2")
APPEND MENU ITEM(<>mMenu;"Row")
SET MENU ITEM PARAMETER(<>mMenu;3;"3")
APPEND MENU ITEM(<>mMenu;"Cell")
SET MENU ITEM PARAMETER(<>mMenu;4;"4")
APPEND MENU ITEM(<>mMenu;"-")
APPEND MENU ITEM(<>mMenu;"AreaObject")
SET MENU ITEM PARAMETER(<>mMenu;6;"5")
APPEND MENU ITEM(<>mMenu;"DropArea")
SET MENU ITEM PARAMETER(<>mMenu;7;"6")
AL_SetColumnTextProperty (exALP;3;ALP_Column_PopupMenu;<>mMenu)

Note: <>mMenu belongs to 4D; AreaList Pro does not release it.

Value Mapping

m |184

Advanced Topics

Example 2: Mapping using PopupArray/PopupMap
First, create an array of values:

ARRAY LONGINT($alpopup;7)

Salpopup{1}:=1

$alpopup{2}:=2

$alpopup{3}:=3

$alpopup{4}:=4

$alpopup{5}:=0

$alpopup{6}:=5

$alpopup{7}:=6

Serr:=AL_SetColumnPtrProperty (exALP;3;ALP_Column_PopupArray;->$alpopup)

Next, either create the map from an array:
ARRAY TEXT($menu;7)
$menu{1}:="Area"
$menu{2}:="Column"
$menu{3}:="Row"
$menu{4}:="Cell"
$menu{5}:="-"
$menu{6}:="AreaObject"
$menu{7}:="DropArea"
$err:=AL_SetColumnPtrProperty (exALP;3;ALP Column_PopupMap;->$menu)

.. or create it from text:

AL_SetColumnTextProperty (exALP;3;ALP_Column_PopupMap;"Area"+Char(3)+ Column"+Char(3)+"Row"+Char(3)+"Cell"+
Char(3)+"-"+Char(3)+"AreaObject"+Char(3)+"DropArea")

Note: a 4D menu created by ArealL.ist Pro belongs to ArealList Pro; AreaList Pro will release it.

It is accessible using:
AL_GetColumnTextProperty (exALP;3;ALP_Column_PopupMenu)

And then just use that menu:
AL_SetColumnLongProperty (exALP;3;ALP_Column_DisplayControl;3)

/Icolumn shows popup values instead of direct values

AL_SetColumnLongProperty (exALP;3;ALP_Column_Enterable;AL Column entry popup only)

/I allow entry using popup

Value Mapping

124

Command Reference

Commands by Theme

Using the Command Reference

Each AreaList Pro command is described in detail in this section. Each description contains the following elements:

Name of the command

| 185

Parameters
AL_AddColumn et

(areaRef:L; dataPointer:Z; insertAt;L) = result:L Descriptions of

the parameters
Parameter Type Description
= areaRef longint Reference of Arealist Pro object on layout
= dataPointer pointer When in Records mode, DataPointer should be a pointer to field.

When in Arrays mode, DataPointer should be a pointer to an array (must not be a local array!).

= insertAt longint Position at which to insert a column; 0 means add to the end.
« result longint

A description

of this command

Add a column at the specified position (insertAt).

The column can be either a field - in which case you pass a pointer to the field in the dataPointer parameter - or an array - in which
case you pass a pointer to the array in the dataPointer parameter.

In addition to passing one-dimensional arrays, you can also pass the first element of a two-dimensional array. In this case, the first
dimension relates to columns and the second dimension relates to rows (see the example below).

Example 1

One or more examples showing
how to use the command

This example adds three columns to an ArealList Pro area referenced as area:

$Serr:=AL_AddColumn (area;->[product]product_code;0)

$Serr:=AL_AddColumn (area;->[product]product_name;0)

$Serr:=AL_AddColumn (area;->[product]product_type;0)

Using the Command Reference

@ |186

Command Reference

Name of the command

This is what tells AreaList Pro what you want to do; the command name must always be entered exactly as shown.

Parameters

Every command requires at least one parameter. Most require the first parameter to be the area reference: this is the Variable
Name that you assigned to the Arealist Pro area that you want the command to affect:

) Property List

4¥ | Plugin Area (product_list) | =
] 7 1

B e & = n @ -

¥ T} Objects

Type ArealistPro

Object Mame product_list

Variable Name products

L ¥ 5 Plug-in

Result

Functions return a result after they have been called. Unless otherwise specified in the parameter description table, the result codes
are long integers and have the following meanings:

Result Code Description

1
N

Generic error

No error - the command executed successfully
Can’t load XML
Can’t save XML

Invalid area reference

Invalid object reference

Invalid request

Invalid array type

Invalid nil pointer

Invalid pointer type

Invalid array size

Can’t load record

SO0l NO A W IN|~ O

- | O

Can’t save record

Using the Command Reference

@ .

Command Reference

Parameter Descriptions

Each command has its own set of parameters, and they are each described in the parameter descriptions table. The tables
comprise three columns: Parameter, Type, and Description.

Parameter: The name of the parameter, as shown in the Parameter list. Each is preceded by one of two arrows which indicate
whether it is a value that you pass to the command or one that the command returns to you:

- Area A value that you pass to the command
« Array A value that is returned by the command

Type: The type of the parameter.
Note: if your database is running in non-Unicode mode, text objects are limited to 32k characters.

Description: Information about the parameter

Note: when calling a plugin command, all omitted parameters are initialized to the NULL of the respective types
(0, 0.0, ", 100:00:00!, ...).

Command Description

An explanation of what the command does and how to use it.

Examples

One or more examples demonstrating how the command might be used.

Command Themes

The commands are organised into six themes:

Area: Commands that affect the entire Areal.ist Pro area
Columns: Commands that affect columns

Rows: Commands that affect rows

Cells: Commands that affect individual cells

Objects: Commands that affect AreaList Pro objects
Utility: Miscellaneous commands such as Arealist Pro licence registration

For each theme there is a set of properties that can be used with that theme’s commands. You will find a complete list of properties
in the Properties by Theme section.

Using the Command Reference - Command Themes

Area

The commands in this theme affect the overall ArealList Pro area.

@ |188

Command Reference

The properties that can be used with these commands can be found in the AreaList Pro Area Properties and the Areal.ist Pro Drop

Area themes.

For some Area properties pertaining to areas (e.g. ALP_Area_UseDateControls or ALP_Area_ClickDelay), not global settings, you
can use 0 as the Area Reference to accessing the default values for all newly initialized (or re-initialized) areas.

m AreaRef = 0 means “access workstation global settings”.

m AreaRef # 0 means “access this area’s settings”.

If you access workstation-only properties (properties not specific to areas, called Plugin properties, such as ALP_Area_TraceOnError
or ALP_Area_Version), AreaRef is ignored.

AL_AddCalculatedColumn

(areaRef:L; dataType:L; callbackMethodName:T; insertAt:L) = result:L

Parameter Type Description
= areaRef longint Reference of ArealList Pro object on layout.
= dataType longint The array type to use:
Array Type Constant Value
Alpha Is Alpha Field 0
Boolean Is Boolean 6
Date Is Date 4
Integer Is Integer 8
Longint Is Longint 9
Picture Is Picture 3or10
Real Is Real 1
Text Is Text 2
Time Is Time 1"
Universal date/time Mapped to 2 (Text)
= callbackMethodName text Name of the method to execute to fill the array. The following parameters will automatically
be passed to the callback method:
$1: ArealList Pro area - longint
$2: column - Longint
$3: type - Longint
$4: pointer to temporary 4D array
$5: first - Longint: first record for which to calculate cell
$6: count - number of cells to calculate in the column
= insertAt longint Position at which to insert a column; 0 means add to the end.
+ result longint

Add a calculated column after the last column or at the specified position.

Note: this command is only useful in field mode.

Command Themes

@ |189

Command Reference

Example

In our database we have retail prices for our products. However, account holders in different levels receive a discount of between 5
and 15%. We want to display the prices with the appropriate discount for the account holder’s level. So instead of adding the Price
column, we can add a calculated column.

The actual calculation is done in a callback method whose name you pass when you add the column.

First, we create our callback method:
// CalculateDiscountPrice
/I Callback method to calculate discount prices
C_LONGINT($1;$2;$3;$5;$6) //must be declared
C_POINTER($4) //this must be declared
SELECTION RANGE TO ARRAY ($5;$5+%6-1;[product]retail_price;$price)
For ($i;1,$6)
Case of
: (<>DisclLevel=1) //<>DiscLevel was set when the user logged in
$4->{$i}:=Round($price{$i}*0.95;2) //5% discount
: (<>DiscLevel=2)
$4->{$i}:=Round($price{$i}*0.9;2) //10% discount
: (<>DisclLevel=3)
$4->{$i}:=Round($price{$i}*0.85;2) //15% discount
End case
End for

Now all we need to do is add the calculated column to our ArealList Pro area:

$err=AL_AddCalculatedColumn (area;ls real;"CalculateDiscountPrice")

Area

@ |190

Command Reference

AL _AddColumn

(areaRef:L; dataPointer:Z; insertAt;L) = result:L

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout.
= dataPointer pointer When in records/fields mode, should be a pointer to field.
When in arrays mode, should be a pointer to an array (must not be a local array!).
= insertAt longint Position at which to insert a column; 0 means add to the end.
+~ result longint

Add a column at the specified position (insertAt).

The column can be either a field - in which case you pass a pointer to the field in the dataPointer parameter - or an array - in which
case you pass a pointer to the array in the dataPointer parameter.

In field mode, when all columns are from a related table, the area display is based upon the current selection from the master
table, not the related table’s selection.

Versions 9.9.2 and above allow any kind of one-dimension array to be added as a column (pointer, blob, object): it is not usable for
display, but this feature can be used to maintain the arrays in sync (using sort or AL_ModifyArrays).

In addition to passing one-dimensional arrays, you can also pass the first element of a two-dimensional array. In this case, the first
dimension relates to columns and the second dimension relates to rows (see the example below).

Example 1

This example adds three columns to an ArealList Pro area referenced as area:
$err:=AL_AddColumn (area;->[product]product_code;0)
$erri=AL_AddColumn (area;->[product]product_name;0)
$Serr:=AL_AddColumn (area;->[product]product_type;0)

Example 2: Using Two-Dimensional Arrays

In this example we’re going to use a 2-D array to create the columns and rows in the area. The first dimension of the array will create
the columns and the second dimension creates the rows.

In other words, if the array has 2 in the first dimension and 4 in the second dimension (e.g. anArray;2;4) there will be two columns
and four rows.

The disadvantage of using two-dimensional arrays is that every column must be the same data type.

This example will create an area of n rows (n being the number of products) and two columns:
ALL RECORDS([product])
$Records:=Records in selection([product])
ARRAY TEXT(ArrayValues;2;$Records)
For ($i;1;$Records)
ArrayValues{1}{$i}:=[product]product_name
ArrayValues{2}{$i}:=[product]product_code
NEXT RECORD([product])
End for

Area

@ |191

Command Reference

For ($i;1; Size of array(ArrayValues))
Serr:=AL_AddColumn ($1;->ArrayValues{$i};0)
End for

AL_GetArealongProperty

(areaRef:L; property:T) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
— property text The property to get.

+~ result longint Value of the “got” property.

Get details of an area’s property. The properties that can be used with this command are the ones of type “longint” and “boolean”
(1 or 0) listed in the AreaList Pro Area Properties section.
Example

After a drag-and drop operation, you need to find out which row from the source area was dragged:
$SourceRow:=AL_GetArealLongProperty ($DropArea;ALP_Area_DragSrcRow)

AL_GetAreaPtrProperty

(areaRef:L; property:T; pointer:Z) = result:L

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.

— property text The property to get.

+« pointer pointer Pointer to variable to hold the result; the variable must be initialized to the correct type before

calling this function.

« result longint

Get details of an area’s property.

The properties that can be used with this command are listed in the AreaList Pro Area Properties section.

Example

To find out the number of columns in an area:
C_LONGINT($numColumns)
Serr:=AL_GetAreaPtrProperty(area; ALP_Area_Columns;->$numColumns)

Area

@ |192

Command Reference

AL_GetAreaRealProperty

(areaRef:L; property:T) = result:R

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= property text The property to get.

~ result real Value of the “got” property.

Get details of an area’s property. The properties that can be used with this command are the ones of type “real” listed in the
Areal.ist Pro Area Properties section.

Example

To find out the current position of the horizontal scroll bar:
$ScrollPos:=AL_GetAreaRealProperty (area;ALP_Area_ScrollLeft)

AL_GetAreaTextProperty

(areaRef:L; property:T) = result:T

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.
= property text The property to get.

+~ result text Value of the “got” property.

Get details of an area’s property. The properties that can be used with this command are the ones of type “text” listed in the
Arealist Pro Area Properties section.

Example

To get a list of the column numbers in their currently sorted order:
$SortList:=AL_GetAreaTextProperty (arca;ALP_Area_SortList)

Area

@ |193

Command Reference

AL RemoveGolumn

(areaRef:L; column:L; {count:L}) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint Number of the (first) column to remove.

= count longint Number of columns to remove, starting at column (optional).
~ result longint

Remove one column or several columns from an area.

If the count parameter is omitted, only column number column will be removed. Otherwise count column(s) will be removed
starting at column.

If you want to remove all the columns in one go, enter -2 for the column number.

Example

To remove columns 3 and 4 from area:
$Serr:=AL_RemoveColumn (area;3;2)

AL_SetArealLongProperty

(areaRef:L; property:T; value:L)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= property text The property to set.

= value longint The value to set the property with (a long integer).

Set a specific property for an area. The properties that can be set with this command are the ones of type “longint” and “boolean”
(1 or 0) listed in the ArealList Pro Area Properties section.

Example

To start data entry in the first row of the second column:
AL_SetArealLongProperty (area;ALP_Area EntryGotoColumn;2)
AL_SetArealLongProperty (area;ALP_Area_EntryGotoRow;1)

Area

@ |194

Command Reference

AL_SetAreaPtrProperty

(areaRef:L; property:T; pointer:Z) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= property text The property to set.

= pointer pointer Pointer to a variable that holds a value to pass to the function.
~ result longint

Set a specific property for an area. The properties that can be set with this command are listed in the AreaList Pro Area Properties

section.

This version of AL_SetAreaProperty allows you to write generic code that uses a pointer to any type of variable.

Example

To show the sort editor:
$showSortEditor:=1

$Serror:=AL_SetAreaPtrProperty (area;ALP_Area_ShowSortEditor;->$showSortEditor)

AL_SetAreaRealProperty

(areaRef:L; property:T; value:R)

Parameter Type Description

- areaRef longint Reference of ArealList Pro object on layout.

= property text The property to set.

= value real The value to set the property with a real number.

Set a specific property for an area. The properties that can be set with this command are the ones of type “real” listed in the

Arealist Pro Area Properties section.

Example

To set the horizontal indent (padding) for the header row to 4 points:
AL_SetAreaRealProperty (area;ALP_Area_HdrindentH;4)

Area

@ |195

Command Reference

AL_SetAreaTextProperty

(areaRef:L; property:T; value:T)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= property text The property to set.

= value text The value to set the property with (text).

Set a specific property for an area. The properties that can be set with this command are the ones of type “text” listed in the
Arealist Pro Area Properties section.

Example

You can create your own text prompt for the AreaList Pro sort editor:
AL_SetAreaTextProperty (area;ALP_Area_SortPrompt;"My custom prompt message")

AL_SuperReport

(areaRef:L; template:T; options:L; styleOptions:L; title:T) = result:T

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= template text XML SuperReport template or full path to a XML template or empty to use ArealList Pro’s
built-in template.

= options longint 0 = use current columns widths; 1 = use developer or user-defined width.

= styleOptions longint Style properties that should not be overtaken by ArealList Pro - see constants in

SuperReport Pro manual, Style Features.

= title text Optional text centered in the header.

+~ result text

Fills a SuperReport Pro report with the area information for printing. See the Printing with SuperReport Pro section.

Area

Columns

@ |196

Command Reference

The commands in this theme affect columns within the ArealList Pro area. The properties that can be used with these commands
can be found in the AreaList Pro Column Properties theme.

For some of the Column properties (mainly style properties), you can use 0 as the Column Number to accessing the default values
for newly created (or re-initialized) columns. If the Column Number is -2, the property will be applied to all existing columns (from

1 to ALP_Area_Columns).

AL_GetColumnLongProperty

(areaRef:L; column:L; property:T) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The column number for which to get the property.
= property text The property to get.

+~ result longint Value of the “got” property.

Get details of a column’s longint property. The properties that you can get with this command are the ones of type “longint” and
“boolean” (1 or 0) listed in the AreaList Pro Column Properties theme.

Example

To find out how many columns in an area are invisible:
$columnCount:=AL_GetAreaLongProperty (area;ALP_Area_Columns)

$lnvisible:=0
For($i;1; $columnCount)

If (AL_GetColumnLongProperty (area;$i;ALP_Column_Visible)=0) //not visible

$Invisible:=$Invisible+1
End If
End For

Columns

@ |197

Command Reference

AL_GetColumnPtrProperty

(areaRef:L; column:L; property:T, pointer:Z) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The column number for which to get the property.
= property text The property to get.

~ pointer pointer Pointer to variable to hold the result.

~ result longint

Get details of a column’s property using a pointer. The properties that you can get with this command are listed in the AreaList
Pro Column Properties theme.

Example

To find out the enterability of column 1:
C_LONGINT($enterable)
Serr:=AL_GetColumnPtrProperty (area;1;ALP_Column_Enterable;->$enterable)

AL_GetColumnRealProperty

(areaRef:L; column:L; property:T) = result:R

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The column number for which to get the property.
= property text The property to get.

+~ result real Value of the “got” property.

Get details of a column’s real property. The properties that you can get with this command are the ones of type “real”, listed in the
Areal.ist Pro Column Properties theme.

Example

To find the current width of column number 2:
C_REAL($colWidth)
$colWidth:=AL_GetColumnRealProperty (area;2;ALP_Column_Width)

Columns

@ |198

Command Reference

AL_GetColumnTextProperty

(areaRef:L; column:L; property:T) = result:T

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The column number for which to get the property.
= property text The property to get.

~ result text Value of the “got” property.

Get details of a column’s text property. The properties that you can get with this command are the ones of type “text”, listed in the
Areal.ist Pro Column Properties theme.

Example

To get column 3’s header text:
C_TEXT($headerText)
$headerText:=AL_GetColumnTextProperty (area;3;ALP_Column_HeaderText)

AL_SetColumnLongProperty

(areaRef:L; column:L; property:T; value:L {; count:L})

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The number of the column for which to set the property.
= property text The property to set.

= value longint Value to pass to the property (long integer).

= count longint Number of columns to set, starting at Column (optional).

Set a specific longint property for a column or several columns. The properties that you can set with this command are the ones
of type “longint” and “boolean” (1 or 0), listed in the AreaList Pro Column Properties theme.

If the count parameter is omitted, only column number column will be set.

If you want to set all the columns in one go, enter -2 for the column number (count is ignored).

Example

To set the horizontal alignment for column 1 to “center”:
AL_SetColumnLongProperty (area;1;ALP_Column_HorAlign;2)

Columns

@ |199

Command Reference

AL_SetColumnPtrProperty

(areaRef:L; column:L; property:T; pointer:Z {; count:L}) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The number of the column for which to set the property.

= property text The property to set.

= pointer pointer Pointer to a variable that holds a value to pass to the function.
= count longint Number of columns to set, starting at Column (optional).

~ result longint

Set a specific property for a column or several columns using a pointer to the value you want to set. The properties that you can
set with this command are listed in the Arealist Pro Column Properties theme.

If the count parameter is omitted, only column number column will be set. Otherwise count column(s) will be set starting at
column.

If you want to set all the columns in one go, enter -2 for the column number (count is ignored).

Example

To rotate the header text for columns 2 and 3 by 90°:
$rotation:=90
Serr:=AL_SetColumnPtrProperty (area;2;ALP_Column_HdrRotation;->$rotation;2)

AL_SetColumnRealProperty

(areaRef:L; column:L; property:T; value:R {; count:L})

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.

= column longint The number of the column for which to set the property.
= property text The property to set.

= value pointer Value to pass to the function (real number).

= count longint Number of columns to set, starting at Column (optional).

Set a specific property for a column or several columns. The properties that you can set with this command are the ones of type
“real”, listed in the AreaList Pro Column Properties theme.

If the count parameter is omitted, only column number column will be set. Otherwise count column(s) will be set starting at
column.

If you want to set all the columns in one go, enter -2 for the column number (count is ignored).

Example

To set the width of columns 2, 3 and 4 to 30 points:
AL_SetColumnRealProperty (area;2;ALP_Column_Width;30;3)

Columns

@ |200

Command Reference

AL_SetColumnTextProperty

(areaRef:L; column:L; property:T; value:T {; count:L})

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= column longint The number of the column for which to set the property.
= property text The property to set.

= value pointer Value to pass to the function (text).

= count longint Number of columns to set, starting at Column (optional).

Set a specific text property for a column or several columns. The properties that you can set with this command are the ones of
type “text”, listed in the AreaL.ist Pro Column Properties theme.

If the count parameter is omitted, only column number column will be set. Otherwise count column(s) will be set starting at
column.

If you want to set all the columns in one go, enter -2 for the column number (count is ignored).

Example

To set the header text for column 1 to “Product Name”:
AL_SetColumnTextProperty (area;1;ALP_Column_HeaderText;"Product Name")

Columns

@ |201

Command Reference

Rows

The commands in this theme affect the rows in an AreaL.ist Pro area. The properties that can be used with these commands can be
found in the ArealList Pro Row Properties theme.

If the Row Number is -2, properties that can be set will be applied to all existing rows (from row #1 to row #ALP_Area_Rows).

See also Row Numbering.

AL_GetRowLongProperty

(areaRef:L; row:L; property:T) = result:L

Parameter Type Description

- areaRef longint Reference of ArealList Pro object on layout.
= row longint Number of row for which to get the details.
= property text The property to get.

+~ result longint Value of the “got” property.

Get details of a row’s longint property.

Example

To get the parent of row 3 in a hierarchical list:
C_LONGINT($parent)
$parent:=AL_GetRowLongProperty (area;3;ALP_Row_Parent)

Rows

@ |202

Command Reference

AL_GetRowPirProperty

(areaRef:L; row:L; property:T; pointer:Z) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Number of row for which to get the details.
= property text The property to get.

= pointer pointer Pointer to a variable to hold the result.

~ result longint

Get details of a row’s property using a pointer.

Example

To get the height of row 3:
C_REAL($height)
$err:=AL_GetRowPtrProperty (area;3;ALP_Row_Height;->$height)

AL_GetRowRealProperty

(areaRef:L; row:L; property:T) = result:R

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.
- row longint Number of row for which to get the details.
= property text The property to get.

~ result real Value of the “got” property.

Get details of a row’s real property.

Example

To get row 2’s horizontal scale:
C_REAL($scale)
$scale:=AL_GetRowRealProperty (areca;2;ALP_Row_HorizontalScale)

Rows

@ |203

Command Reference

AL_GetRowTextProperty

(areaRef:L; row:L; property:T) = result:T

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Number of row for which to get the details.
= property text The property to get.

~ result text Value of the “got” property.

Get details of a row’s text property.

Example

To get the name of the font for row 2:
C_TEXT($font)
$font:=AL_GetRowTextProperty (area;2;ALP _Row FontName)

AL_ModifyArrays

(areaRef:L; selector:L; row:L; count:L) = result:L

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.

= selector longint Action to perform.

= row longint Position where insert or delete occurred or should occur.
= count longint Number of rows to insert or delete, starting at Row.

Insert or delete a number of rows (array elements) at the specified position, or inform AreaList Pro that a number of elements have
been inserted or deleted.

selector:
0 = count elements were inserted at row
1 = insert count elements at row using INSERT IN ARRAY
2 = count elements were deleted at row

3 = delete count elements at row using DELETE FROM ARRAY

This value informs Arealist Pro that the arrays have been modified (selector = 0 or 2) or asks AreaList Pro to modify the arrays
(selector = 1 or 3). All arrays contained in the area will be processed, including hidden columns if any.

ArealList Pro will adjust the cache and move the row and cell options (depending on the current values forALP_Area MoveRowOptions
and ALP_Area_MoveCellOptions). Thus AL_ModifyArrays is especially useful if you want to insert or delete rows while keeping
any options (e.g. formatting) that you may have set for specific rows or cells.

Constants are available for all actions performed by AL_ModifyArrays.

Rows

Example

The following two examples produce the exact same result in an area displaying two arrays.

Insert with 4D and inform Arealist Pro:

INSERT IN ARRAY (myArray1;5;3) //insert 3 elements at position 5
INSERT IN ARRAY (myArray2;5;3) //same with the other array
AL_ModifyArrays (area;AL Modify Insert info;5;3) //inform AreaList Pro

Ask Arealist Pro to insert:

AL_ModifyArrays (area;AL Modify Insert action;5;3) //insert 3 elements at position 5 in both arrays

@ |204

Command Reference

AL_SetRowLongProperty

(areaRef:L; row:L; property:T; value:L {; count:L})

Parameter Type Description

- areaRef longint Reference of ArealList Pro object on layout.

= row longint Number of the row for which to set the property.
= property text The property to set.

= value longint Value to pass to the function (long integer).

= count longint Number of rows to set, starting at Row (optional).

Set a specific longint property for a row or several rows. If the count parameter is omitted, only row number row will be set.
Otherwise count row(s) will be set starting at row.

If you want to set all the rows in one go, enter -2 for the row number (count is ignored).

Example

To set the text in rows 2 to 10 to bold + underline:
AL_SetRowLongProperty (area;2;ALP_Row_StyleF;5;9)

Rows

@ |205

Command Reference

AL_SetRowPtrProperty

(areaRef:L; row:L; property:T; pointer:Z {; count:L}) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= row longint Number of the row for which to set the property.

= property text The property to set.

= pointer pointer Pointer to a variable that holds a value to pass to the function.
= count longint Number of rows to set, starting at Row (optional).

~ result longint

Set a specific property for a row or several rows using a pointer to the value you want to set.
If the count parameter is omitted, only row number row will be set. Otherwise count row(s) will be set starting at row.

If you want to set all the rows in one go, enter -2 for the row number (count is ignored).

Example

To set the font size for row 2 to 20:
$fontSize:=20
AL_SetRowPtrProperty (area; 2; ALP_Row_Size; ->$fontSize;19)

AL_SetRowRealProperty

(areaRef:L; row:L; property:T; value:R {; count:L})

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.

= row longint Number of the row for which to set the property.
= property text The property to set.

= value real Value to pass to the function (real number).

= count longint Number of rows to set, starting at Row (optional).

Set a specific property for a row or several rows.

If the count parameter is omitted, only row number row will be set. Otherwise count row(s) will be set starting at row.

If you want to set all the rows in one go, enter -2 for the row number (count is ignored).

Example

To rotate 90° the text displayed in row 33:
AL_SetRowRealProperty (area;33;ALP_Row_Rotation;90)

Rows

@ |206

Command Reference

AL_SetRowTextProperty

(areaRef:L; row:L; property:T; value:T {; count:L})

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= row longint Number of the row for which to set the property.
= property text The property to set.

= value text Value to pass to the function (text).

= count longint Number of rows to set, starting at row (optional).

Set a specific property for a row or several rows. If the count parameter is omitted, only row number row will be set. Otherwise
count row(s) will be set starting at row.

If you want to set all the rows in one go, enter -2 for the row number (count is ignored).

Example

Set the text color for rows 3 to 7 to black:
AL_SetRowTextProperty (area;3;ALP_Row_TextColor;"Black";5)

Rows

@ ..

Command Reference

Cells

The commands in this theme affect individual cells within the Areal.ist Pro area.

The properties that can be used with these commands can be found in the Areal.ist Pro Cell Properties theme.

If the Row Number is -2, the property will be applied to all rows displaying data (from 1 to ALP_Area_Rows) for the specified Column
Number. —

If the Column Number is -2, the property will be applied to all columns in the area (from 1 to ALP_Area_Rows) for the specified
Row Number.

See examples in the ArealList Pro Cell Properties section.

AL_GetCellLongProperty

(areaRef:L; row:L; column:L; property:T) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Row number for which to get the property.

= column longint Column number for which to get the property.
= property text The property to get.

+~ result longint Value of the “got” property.

Get details of a cell’s property. The properties that you can get with this command are the ones of type “longint” and “boolean” (1
or 0) listed in the AreaList Pro Cell Properties theme.

Example

To find out the enterability of the cell at coordinates 1,1:
$enterable:=AL_GetCellLongProperty (area;1;1;ALP_Cell_Enterable)

Cells

@ |208

Command Reference

AL_GetCellPtrProperty

(areaRef:L; row:L; column:L; property:T; pointer:Z) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Row number for which to get the property.

= column longint Column number for which to get the property.
= property text The property to get.

~ pointer pointer Pointer to variable to hold the result.

~ result longint

Get details of a cell’s property using a pointer. The properties that you can get with this command are listed in the ArealList Pro
Cell Properties theme.

Example

To find out which font the cell at coordinates 1,4 is currently set in:

Selectedfont:
Serror:=AL_GetCellPtrProperty (area;1;4;ALP_Cell FontName;->Selectedfont)

AL_GetCellRealProperty

(areaRef:L; row:L; column:L; property:T) = result:R

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Row number for which to get the property.

= column longint Column number for which to get the property.
= property text The property to get.

+~ result real Value of the “got” property.

Get details of a cell's real property. The properties that you can get with this command are the ones of type “real” listed in the
Arealist Pro Cell Properties theme.

Example

To get the horizontal scale of the cell at coordinates 4,2:

C_REAL($scale)
$scale:=AL_GetCellRealProperty (area;4;2;ALP_Cell HorizontalScale)

Cells

@ |209

Command Reference

AL_GetCellTextProperty

(areaRef:L; row:L; column:L; property:T) = result:T

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.
= row longint Row number for which to get the property.

= column longint Column number for which to get the property.
= property text The property to get.

~ result text Value of the “got” property.

Get details of a cell’s text property. The properties that you can get with this command are the ones of type “text” listed in the
Areal.ist Pro Cell Properties theme.

Example

To get a description of the options, in XML, of the cell at coordinates 4,2:
C_TEXT($xml)
$xml:=AL_GetCellTextProperty (area;4;2;ALP_Cell XML)

AL_SetCellLongProperty

(areaRef:L; row:L; column:L; property:T; value:L {; rowCount:L} {; columnCount:L})

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= row longint The number of the row for which to set the property.

= column longint The number of the column for which to set the property.
= property text The property to set.

- value longint Value to pass to the function (long integer).

= rowCount longint Number of rows to set, starting at Row (optional).

= columnCount longint Number of columns to set, starting at Column (optional).

Set a specific longint property for a cell or several cells. The properties that you can set with this command are the ones of type
“longint” and “boolean” (1 or 0) listed in the AreaList Pro Cell Properties theme.

If the count parameters are omitted, only cell at coordinates row, column will be set.

Otherwise rowCount x columnCount cells will be set starting at the cell at coordinates row, column.

Example

To set the vertical alignment to “bottom” for the cell at coordinates 4,2:
AL_SetCellLongProperty (area;4;2;ALP_Cell_VertAlign;3)

Cells

@ |210

Command Reference

AL_SetCellPtrProperty

(areaRef:L; row:L; column:L; property:T; pointer:Z {; rowCount:L} {; columnCount:L}) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= row longint The number of the row for which to set the property.

= column longint The number of the column for which to set the property.

= property text The property to set.

= pointer pointer Pointer to a variable that holds a value to pass to the function.
= rowCount longint Number of rows to set, starting at Row (optional).

= columnCount longint Number of columns to set, starting at Column (optional).

~ result longint

Set a specific property for a cell or several cells using a pointer to the value you want to set.

If the count parameters are omitted, only cell at coordinates row, column will be set.

Otherwise rowCount x columnCount cells will be set starting at the cell at coordinates row, column.

Example

To set the color of the text in cell 1,3 to blue:

C_TEXT($color)

$color:="Blue"

$Serr:=AL_SetCellPtrProperty (area;1;3;ALP_Cell_TextColor;->$color)

Note: for more information on how to specify colors, see the Working with Colors section.

Cells

@ |211

Command Reference

AL_SetCellRealProperty

(areaRef:L; row:L; column:L; property:T; value:R {; rowCount:L} {; columnCount:L}))

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= row longint The number of the row for which to set the property.

= column longint The number of the column for which to set the property.
= property text The property to set.

= value real Value to pass to the function (real number).

= rowCount longint Number of rows to set, starting at Row (optional).

= columnCount longint Number of columns to set, starting at Column (optional).

Set a specific property for a cell or several cells. The properties that you can set with this command are the ones of type “real”,
listed in the Areal.ist Pro Cell Properties theme.

If the count parameters are omitted, only cell at coordinates row, column will be set.

Otherwise rowCount x columnCount cells will be set starting at the cell at coordinates row, column.

Example

To rotate the text in the cells from coordinates 2,1 to coordinates 8,4 by 180° (turn them upside down):

AL_SetCellRealProperty (area;2;1;ALP_Cell_Rotation;180;7;4)

AL_SetCellTextProperty

(areaRef:L; row:L; column:L; property:T; value:T {; rowCount:L} {; columnCount:L}))

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout.

= row longint The number of the row for which to set the property.

= column longint The number of the column for which to set the property.
= property text The property to set.

= value text Value to pass to the function (text).

= rowCount longint Number of rows to set, starting at Row (optional).

= columnCount longint Number of columns to set, starting at Column (optional).

Set a specific text property for a cell or several cells. The properties that you can set with this command are the ones of type “text”,
listed in the Areal.ist Pro Cell Properties theme.

If the count parameters are omitted, only cell at coordinates row, column will be set.

Otherwise rowCount x columnCount cells will be set starting at the cell at coordinates row, column.

Example

To set the font for the cell at row 3, column 2 to Arial Black:
AL_SetCellTextProperty (area;3;2;ALP_Cell_FontName;"Arial Black")

Cells

@ |212

Command Reference

Objects

AL_SetObjects/AL_GetObjects are used for getting or setting an area’s property where there is an array of values rather than an
individual value.

For example, if you wanted to know how many rows were selected in an Arealist Pro area with row selection, you would use the
ALP_Area_Select property:

numberOfRows:=AL_GetAreaLongProperty(area; ALP_Area_Select)

numberOfRows tells you the number of rows that are selected.

However, if you want to know which rows are selected, you cannot use AL_GetAreaLongProperty. The selected rows are not
one number - they are a set of numbers; one for each selected row. You can use AL_GetObjects with the ALP_Object_Selection

property - for example:
ARRAY LONGINT(selectedRows;0)
$error:=AL_GetObjects(area; ALP_Object_Selection; selectedRows)

After the call the selectedRows array will contain the row numbers that are selected. Note that the array is passed directly, not as
a pointer.

The properties that can be used with these commands can be found in the AreaList Pro Objects theme.

AL_GetObjects

(areaRef:L; property:T; array:Y) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= property text The property to get.

~ array array An array to hold the result. Depending on the property, this can be an array of row or

column numbers or a two-dimensional array of cell coordinates.

~ result longint

Get details of an area’s object property.

Example
To find out which rows have been selected (when in multi-row selection mode), place this code in the ArealList Pro area’s Object
Method:
Case of
: (Form event=0n Plug in Area)
Case of
: (AL_GetAreaLongProperty (area;ALP_Area_AlpEvent)=1) //did user click on a row?
ARRAY LONGINT(aRows;0)
$err:=AL_GetObjects (area;ALP_Object_Selection;aRows) //get selected rows

End case
End case

aRows now contains an element for each selected row containing the row number.

Objects

@ |213

Command Reference

AL_GetObjects?2

(areaRef:L; property:T; array1:Y; array2:Y) = result:L

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout.

= property text The property to get.

+~ array1 array An array to hold the first array result.

+~ array2 array An array to hold the second array result. Depending on the property, this can be an array of
row or column numbers.

~ result longint

Get details of an area’s object property using two arrays. These arrays must be one-dimensional. The properties that can be used
with this command can be found in the Arealist Pro Objects theme.

Example
To get two arrays listing the table and field numbers that have been assigned to the columns in an area:
ARRAY LONGINT($arrayTableNos;0)

ARRAY LONGINT($arrayFieldNos;0)
AL_GetObjects2 (area;ALP_Object_Fields;$arrayTableNos;$arrayFieldNos)

AL_SetObjects

(areaRef:L; property:T; array:Y) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= property text The property to set.

= array array An array containing the values to pass to the function. Depending on the property, this can
be an array of row or column numbers or a two-dimensional array of cell coordinates.

result longint

Set a property for an area. You can use either a one - or two- dimensional array.

Example

Add a number of arrays to an Arealist Pro area:
ARRAY POINTER(aPtr;4)
aPtr{1}:=->[product]product_type
aPtr{2}:=->[product]product_name
aPtr{3}:=->[product]retail_price
aPtr{4}:=->[product]description
$err:=AL_SetObjects (area;ALP_Object_Columns;aPtr)
/IDELETE all columns and then add specified pointers (effectively replacing all columns)

Objects

@ |214

Command Reference

AL_SetObjects2

(areaRef:L; property:T; array1:Y; array2:Y) = result:L

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout.
= property text The property to set.

An array containing the values to pass to the function. Depending on the property, this can

= array array
be an array of row or column numbers or a two-dimensional array of cell coordinates.

= array2 array An array containing the values to pass to the function Depending on the property, this can
be an array of row or column numbers.

+~ result longint

Set properties for area objects using two arrays.

Example

A good example of the use of this command is for displaying data in a hierarchical list.
$err:=AL_SetObjects2 (arca;ALP_Object_Hierarchy;$ailevel;$aiExpanded)

Objects

@ |215

Command Reference

Utility

%AL_DropArea

%AL_DropArea is the command used to identify the plug-in area to which an ArealList Pro row or column can be dragged, but which
does not display anything.

This command will appear in the 4D Object Types popup on a layout Property List.
It is only used in the object definition for an %AL_DropArea object, and should never be used as a command in a 4D method.

%ArealListPro

%ArealListPro is the command used to identify the AreaList Pro plug-in area when you create a plug-in area object on a layout.

This command is only used in the object definition for an AreaList Pro object, and should never be used as a command in a 4D
method.

AL_ColorPicker

(ARGBColor:L) = result:L

Parameter Type Description
< ARGBColor longint The number of the color that was selected.
+~ result longint 1 if a color was selected; 0 if not.

Invokes the color picker to select a color using the system color palette.

Note: ArealList Pro uses the alpha channel A for transparency. See the Working with Colors section.

The function returns a longint in ARGBColor which you can then use as a parameter to set colors for rows, text, etc.

Note that the 4D function Select RGB Color performs a similar function, but without the alpha channel.

Utility

@ |216

Command Reference

AL Load

(areaRef:L; XML:T) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= XML text XML data that was saved using the AL_Save command.
« result longint 0 if the XML was loaded OK; 1 if not.

Initialize an area from an XML (using UTF-8) text that was saved to a text field or variable using the AL_Save command.

Please see the section on XML for more details about saving and loading XML.

Example

This example initialises an AreaList Pro area using settings that were saved into a field in the database.
Serr:=AL_Load (area;[Settings]ALP_template)

AL_Register

(registrationCode; options; email) = result

Parameter Type Description
— registrationCode text Pass the registration key to register your copy of AreaList Pro. The key is either linked to the

4D or 4D Server serial number (individual licenses), to the machine ID (merged licenses), to
the name of the company/developer (unlimited annual licenses) or to the product (master

keys for Online registration).

= options longint An optional longint combining up to 4 bits.
= email text Online registration option: developer email to notify when a license is issued or resent.
+~ result longint 0 or error code.

AL_Register is used to register the ArealList Pro plugin for standalone or server use.
Please see the License Types section for detailed information about the licensing options available for AreaList Pro.

Multiple calls to AL_Register are allowed. The plugin will be activated if at least one valid key is used, and all subsequent calls to
AL_Register will return 0, unless the force check bit is set to true in the options parameter.

registrationCode — You must call AL_Register with a valid registration key, otherwise AreaList Pro will operate in demonstration
mode - it will cease to function after 20 minutes. In case a master key is used the plugin will attempt a connection to e-Node's license
server for Online registration.

options — Optional. This parameter combines up to 4 bits as described below. The default mode (registrationCode being a
passed as the only parameter) is silent: no force check, no confirmation, no alert, no email.

Utility

124

Command Reference

Bit number Description

| 217

0 Force check: if this bit is is on (true), registrationCode is tested regardless of current registration state. If the plugin was not
previously registered and the result is 0, it is registered the same way as if the bit was off (or the whole options parameter
omitted)

If the plugin was previously successfully registered, a registration error will be returned in result in case registrationCode is
invalid, but the plugin will remain registered.

1 Online registration option: confirm connection “Is it OK to connect to e-Node’s license server to register AreaList Pro?”

Online registration option: display alert if registration error

Online registration option: display alert if registered

email — Optional. The developer email address where to send Online registration information.

result — O or error code:

Result code Description

0 OK

1 Beta license has expired

2 Invalid license

3 The license has expired

4 The OEM license has expired

5 The maximum number of users has been exceeded

6 The license is for a different environment (e.g. the licence is for a single-user version, but you are using it with 4D Server)
7 The license is linked to a different 4D license

8 Invalid merged license

9 Only serial/ID licenses are allowed in text license files (includes Regqister button and Online registration)
10 Unauthorized master key (Online registration)

11 Can't connect to e-Node's license server to perform Online registration

12 No Online registration license available for this master key (unknown or all used)

When AL_Register is called with an empty string, the license dialog will be displayed if ArealList Pro is not registered and the
dialog was not yet displayed. This allows you to show the registration dialog to your users without effectively calling a AreaList Pro
command or displaying a ArealList Pro area.

Note: alternately to AL_Register, you can place a plain text file into your 4D Licenses folder or use
the Demo mode dialog “Register” button. This is only valid for non-unlimited licenses.

Basic example
C_LONGINT ($result)
$result:=AL_Register ("YourRegistrationKey")
Case of
($result=2)
ALERT ("The ArealList Pro licence is invalid.")
:($result=3)
ALERT ("The ArealList Pro licence has expired.")
etc.

End case

Utility

@ |218

Command Reference

Example with multiple calls
C_LONGINT ($result) //ignored in this case
$result:=AL_Register ("Registration key one")
$result:=AL_Register ("Registration key two")
$result:=AL_Register ("Registration key three")

etc.
If (Sresult#0) //registration failed on all keys
ALERT ("ArealList Pro could not be registered.")
End if

Force check example

In this example we assume that only "Registration key two" is valid, but you want to check the other keys status.
C_LONGINT ($result)
$result:=AL_Register ("Registration key one";1) //invalid, will return an error, the plugin isn't registered
$result:=AL_Register ("Registration key two";1) //valid, will return 0, the plugin is registered

$result:=AL_Register ("Registration key three";1) //invalid, will return an error, the plugin is still registered

Online registration examples

Confirm connection, alert if successful, alert if failed, send email notification to developer@4dchampions.com:
C_LONGINT ($result)
$result:=AL_Register ("Master key";0 ?+1 ?+2 ?+3;" developer@4dchampions.com")

Silent connection, alert if successful, alert if failed, no email notification:
C_LONGINT ($result)
$result:=AL_Register ("Master key";0 ?+2 ?+3)

AL GetPlainText

(styledText:T) = plainText:T

Parameter Type Description
= styledText text Styled (attributed) text.
« plainText text Plain text.

Converts an attributed (styled) text to plain text. See Areal.ist Pro Text Style Tags

Example
C_TEXT($text)
$text:=AL_GetPlainText ("<c blue>test</c>") //returns "test"

Utility

@ |219

Command Reference

AL Save

(areaRef:L; XML:T) = result:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

= XML text A variable or field to save an area’s XML settings into.
« result longint 0 if the XML was saved OK; 2 if not.

Save an area’s settings as XML (using UTF-8) in a text variable or field.

Please see the section on XML for more details about saving and loading XML.

Example

Save an Arealist Pro area’s settings into a field in the database.

C_TEXT($Settings)

$err:=AL_Save (area;$Settings)
[Settings]ALP_template:=$Settings

AL_Seticon

(areaRef:L; iconlID:L; iconValue:P) = result:L

Parameter Type Description

= areaRef longint Reference of ArealList Pro object on layout or 0 for global workstation settings

= iconlD longint ID number (assigned by the developer) of a picture to add to the AreaList Pro picture library.
The number must be between 1 and 16777215.

= iconValue picture A picture variable that contains the specified picture. If this is empty, the picture is removed
from the ArealList Pro picture library. The picture can be a variable or a 4D field.

+~ result longint

Use this command to add a picture to ArealList Pro’s picture library, which is basically a picture cache.

You can use 0 as the areaRef to set an icon in the global workstation cache, or specify a given area.

You assign a reference number, which can then be used in the icon placement and formatting commands.

Each picture is stored only once but can be used any number of times, thus being very efficient with memory usage.

Note: icon IDs 1 to 5 can be used to replace Arealist Pro's native icons for popups and hierarchical lists. See Displaying

custom pictures instead of ArealL.ist Pro's native icons.

Example

To add a picture from a 4D field to the AreaList Pro picture library and assign it the reference number 100:

$err:=AL_Setlcon (area;100;[pictures]clock_icon)

For detailed examples of using pictures in your Arealist Pro area, see the Pictures topic.

Utility

@

Properties by Theme

Properties by Theme

In this section you'll find complete details about each property that can be used with the AreaList Pro commands. They are organised
into themes according to which group of commands they relate to:

Areal.ist Pro Area Properties affect the whole ArealList Pro area

Arealist Pro Column Properties affect columns

Arealist Pro Row Properties affect rows

Arealist Pro Cell Properties affect cells
Areal.ist Pro Object Properties affect various objects used by ArealList Pro

The following details are included for each property:

Constant: the name of the property that you type into the command.
Get: whether the constant can be used in Getter commands

Set: whether it can be used in Setter commands

Per: persistent. If a property is persistent, it means that the property is saved with the area definition and will be applied when the
area is displayed again.

Type: the type of the value:

Bool: boolean value (True=1 or False=0)
Longint: a long integer

Real: a real number

Text: an alphanumeric

Color: the “Color” type will accept seven methods, whether as string values or longint values. See Working with colors.

Cell: a string containing both row number and column number separated by a comma («row,column») = e.g. ‘5,3’ is the cell located
at the fifth row, third column.

Default: the default value that will be used for this property unless you specify otherwise
Min: the minimum acceptable value, where appropriate
Max: the maximum acceptable value, where appropriate

Comments: a description of the constant and, where appropriate, a list of allowable options

Properties by Theme

| 220

Arealist Pro Area Properties

Use these properties with commands in the Area command theme:

AL_AddCalculatedColumn
AL_AddColumn
AL_GetAreaLongProperty
AL_GetAreaPtrProperty
AL_GetAreaRealProperty
AL_GetAreaTextProperty
AL_SetArealLongProperty
AL_SetAreaPtrProperty
AL_SetAreaRealProperty

AL_SetAreaTextProperty

@

Properties by Theme

For some Area properties pertaining to areas (e.g. ALP_Area_UseDateControls or ALP_Area_ClickDelay), not global settings, you

can use 0 as the Area Reference to accessing the default values for all newly initialized (or re-initialized) areas.

m AreaRef = 0 means “access workstation global settings”.

m AreaRef # 0 means “access this area’s settings”.

| 221

If you access workstation-only properties (properties not specific to areas, called Plugin properties, such as ALP_Area_TraceOnError

or ALP_Area_Version), AreaRef is ignored.

ArealList Pro Area Properties

ArealList Pro Area General Properties

Constant

ALP_Area_ArrowsForHierarchy

Get

v

Set

v

Per

Type

Default

Min

Max

Arealist Pro Area General Properties

bool

false (0)

@

Properties by Theme

Comments

When hierarchy is displayed, left/right arrow keys
(without command key) are used to collapse/
expand nodes, not for horizontal scrolling

ALP_Area_AutoResizeColumn

v

long int

0

-1

number
of
columns

0 = do nothing
-1 =ALP_Area_AutoSnapLastColumn

otherwise autoresize the column to match the
area size if there is enough space left

See Column Automatic Resize

ALP_Area_AutoSnapLastColumn

v

bool

false (0)

If set, the last visible column will be resized
(ALP_Column_Width) to match the area size if
there is enough space left

Note: this property is the same as
ALP_Area_AutoResizeColumn (which will be
superseded and conversely, whichever comes last)
with the last visible column

This property is simply a wrapper to
ALP_Area_AutoResizeColumn with values 0/-1)

See Column Automatic Resize

ALP_Area_Compatibility

bool

depends

Arealist Pro 8.x compatibility mode (defaut value
depends on initialization)

ALP_Area_CompHideCols

long int

0

Number of columns to hide (compatibility mode
only)

See Hiding columns

ALP_Area_DataHeight

real

Total height of all columns

If the value is greater than ALP_Area_ListHeight, the
vertical scrollbar will be active

ALP_Area_DataWidth

real

Total width of all columns

If the value is greater than ALP_Area_ListWidth, the
horizontal scrollbar will be active

ALP_Area_DontSetCursor

bool

false (0)

When set, ArealList Pro will not set the cursor

Note: the cell entry widget is not affected, it
maintains the cursor on its own

ALP_Area_IsArea

bool

Is this an ArealList Pro area?

ALP_Area_Kind

AN

text

Object kind = “ALP”

ALP_Area_ListHeight

real

Height of the list area: the data area not including the
frame, scrollbars, header and footer

ALP_Area_ListWidth

real

Width of the list area, not including the frame and
scrollbars

ALP_Area_MoveCellOptions

AN

bool

Move cell options with cells (on sort)

ALP_Area_MoveRowOptions

AN

AN

AN

bool

Move row options with rows (on sort and drag)

ALP_Area_Name

text

Name of the area (if empty, the variable name is
initialized from the form variable name in design
mode)

| 222

ArealList Pro Area Properties

Constant

ALP_Area_ReadOnly

Get

v

Set

4

Type

long int

Default

ArealList Pro Area General Properties

0

@

Properties by Theme

Comments

Make the area read-only for the specified
feature(s)

bit O (value 1): make area not enterable

bit 1 (value 2): make area not droppable (ignore
drag)

bit 2 (value 4): make area not draggable

ALP_Area_Redraw

n/a

Redraw the area object (redraw is immediate)

ALP_Area_ScrollColumns

bool

If set to true, horizontal scrolling is done in
number of columns, not in points
Automatically set to true when compatibility is
turned on

When set to True, no visible column will ever be
larger that the area width.

ALP_Area_ScrollLeft

real

Horizontal scroll position in points

ALP_Area_ScrollTop

real

Vertical scroll position in points

ALP_Area_Selected

bool

Is selected (has focus in 4D)

ALP_Area_Self

RSN

pointer

Pointer to the area object
C_POINTER($ptr)

$err:=AL_GetAreaPtrProperty
($area;ALP_Area_Self;->$ptr)

ALP_Area_SRPTableTemplate

text

Get the SuperReport Pro template used for
report creation (stored in Resources/Table
Report.xml) as XML

ALP_Area_UserBLOB

AN

BLOB

BLOB for free use by developer

ALP_Area_Visible

bool

Area is visible

Set to false (0) before showing another dialog
over ArealList Pro or DropArea to hide scrollbars

ALP_Area_WindowsClip

bool

true (1)

Area clipping mode on Windows
If set to false, the area will not be clipped so that
other 4D objects can be positioned over the area

Set to false (0) in case you want to use FORM
SCREENSHOT on Windows

May be used with the area reference set to zero
(newly created areas will use this mode)

ALP_Area_WindowsText

bool

false (0)

1 = change the engine used for drawing on
Windows to GDI drawing

0 (default) = use GDI+

GDI: better rendering, no transparency, no
horizontal scaling, limited text rotation features
GDI+: allows the three features above, but may
affect precise rendering on Windows

Can be used with existing areas to dynamically
switch the drawing engine used on Windows

May be used with the area reference set to zero
(newly created areas will use this mode)

ALP_Area_XML

text

Full description of the area in XML

ALP_Area_XMLAP

text

Advanced properties from design

| 223

ArealList Pro Area Properties

ArealList Pro Area Copy & Drag Properties

Constant

ALP_Area_CopyFieldSep

Get

v

Set

v

Per

Type

Default

Min

@

Properties by Theme

Max Comments

ArealList Pro Area Copy & Drag Properties

v

text

TAB

Field separator for copy/drag operation

See Copying or dragging from an ArealL.ist Pro
Area

| 224

ALP_Area_CopyFieldWrapper

text

One character string

The character used to “wrap” fields when the
user copies selected rows to the clipboard
This character will be placed both before and
after each field

If the value is the null (empty) string, then no
character will wrap the fields

ALP_Area_CopyHiddenCols

bool

false (0)

Using Edit->Copy or a row drag, clipboard will
contain all columns if set to true

ALP_Area_CopyOptions

bool

false (0)

Include the headers in the copied/dragged data
(but only when the headers are not hidden with
ALP_Area_HideHeaders)

ALP_Area_CopyRecordSep

text

CRLF

Record separator for copy/drag operation

Arealist Pro Area Data Properties

Constant

ALP_Area_CacheSize

Get

v

Set

v

Per

v

Type

ArealList Pro Area Data Properties

long int

Default

1024

Min

128

Comments

Cache size (in number of rows to cache).

Can be used with area=0 to access workstation
default (used for initialization of new areas)

ALP_Area_CheckData

Check array/selection size and fill the cache with
data

The number of rows is checked only if explicitly
requested with this property

ALP_Area_ClearCache

long int

Clear cells cache and refreshes data

Set value to a row number to refresh only that
row (see Row Numbering)
Set value to -2 to refresh all rows

ALP_Area_Columns

v

long int

Current number of columns.

ALP_Area_FillCache

Fill the data cache. ArealList Pro 9 uses a true
cache for data (at least for the rows on screen)

This property will invoke the cache-filling routine

If the number of rows is less than the cache size
(ALP_Area_CacheSize), all rows are loaded into
the cache. Otherwise 128 rows are loaded

Note: use only after clearing some/all cached
rows — visible rows are refreshed

Happens automatically on Update event

ALP_Area_Rows

long int

Current number of rows

ALP_Area_TablelD

v

v

long int

0

Main table number

Zero when showing arrays

>0 when showing fields

See also No fields from local table in field mode

ArealList Pro Area Properties

Constant

ALP_Area_UpdateData

Get

Set

4

Per

Type

Default

Min

Max

ArealList Pro Area Data Properties

@

Properties by Theme

Comments

Clear cells cache, check for selection size
change, fill cells cache

Arealist Pro Area Display Properties

Constant Get Set Per Type Default Min Max Comments
Areal.ist Pro Area Display Properties
ALP_Area_AltRowColor v v v color #FFEEEEEE Alternate row color (default is light gray)
ALP_Area_AItRowOptions v v v longint O 0 15 Alternate row coloring options:
bit 0: 1 = enable, 0 = disable
bit 1: 1 = apply ALP_Area_AltRowColor to even
rows, 0 = apply to odd rows
bit 2: 1 = alt color applies to empty space below the
last row (if any)
bit 3: 0 (default) = use the existing color when
defined at cell or row level, instead of alternate
color for alternate rows (column color is ignored)
1 = mix the alternate color with the existing color
set for the cell/row/column (in this order)
ALP_Area_BottomRow v long int The row number of the last (possibly partially)
visible row on screen
ALP_Area_CalcAllRows v 4 longint O 0 2 Calculate column width from all rows:
0=no
1 = yes (AreaList Pro 8.x mode: only text (longest
text, no support for attributed text) & pictures
(widest picture), all other columns have
default by type and format used)
2 = fully (can be slow on large arrays)
ALP_Area_ColDivColor 4 v v color #FF808080 Column divider color (default is gray)
ALP_Area_ColsInGrid v v v longint -1 -1 Number of columns in grid
ALP_Area_ColsLocked v v v longint O 0 Number of locked columns in grid
ALP_Area_ColumnLock v v v bool true (1) Allow column lock by user
ALP_Area_ColumnResize v v v bool true (1) Allow column resize by user
If set to true, the column width will also
automatically be adjusted when the user double-
clicks on the column separator in the header
ALP_Area_DrawFrame v v v longint O 0 2 Draw frame:
0 = none
1 = black rectangle
2 = modern look (sunken)
ALP_Area_Ftrindent v v v point 3;2 Horizontal and vertical indents for the footer rows
in points
The first value represents the horizontal indent
(left and right) and the second value is the
vertical indent (top and bottom)
ALP_Area_FtrindentH v v v real 64 Horizontal indent for the footer rows, in points
ALP_Area_FtrindentV v v v real 2 0 64 Vertical indent for the footer rows, in points

ArealList Pro Area Properties

| 225

@

Properties by Theme

| 226

Constant Get Set Per Type Default Min Max Comments
Arealist Pro Area Display Properties
ALP_Area_Hdrindent v v v point 3;2 Horizontal and vertical indents for the header
rows in points
The first value represents the horizontal indent
(left and right) and the second value is the
vertical indent (top and bottom)
ALP_Area_HdrindentH v v 4 real 3 0 64 Horizontal indent for the header rows, in points
ALP_Area_HdrindentV 4 4 v real 2 64 Vertical indent for the header rows, in points
ALP_Area_HeaderMode v v (4 longint 0 0 2 0 = native headers
1 = plain color rectangles
2 = sunken/raised color rectangles
When both ALP_Area_HeaderMode and
ALP_Area_ShowSortIndicator properties are not
zero, the v8 sort order button is displayed above
the vertical scrollbar
ALP_Area_HideHeaders v v 4 bool false (0) Hide headers
ALP_Area_Hierindent v v (4 real 16 0 64 Indent increment for every hierarchy level (for
use with hierarchical lists)
ALP_Area_LimitRows v v longint -1 -2 -1 (default) = display all rows
>1 = limit the number of rows to display ("shrink"
selection)
Reset to -2 when a column is added or removed
ALP_Area_MinFtrHeight v v (4 real 0 0 256 Minimum allowable height for the footer row in
points
ALP_Area_MinHdrHeight v v (4 real 0 0 256 Minimum allowable height for the header row in
points
ALP_Area_MinRowHeight v v (4 real 0 0 256 Minimum row height in points
ALP_Area_MiscColor1 v 4 4 color #FFEEEEEE Area color above the vertical scrollbar
OBSOLETE: this area is not customizable in
ArealList Pro v9 (the header is drawn)
ALP_Area_MiscColor2 v v (4 color #FFEEEEEE Area color below the vertical scrollbar
MODIFIED: this area is not customizable in
ArealList Pro v9 (the scrollbar is drawn, and it is
bigger than in 8.x)
In AreaList Pro v9, this color is used as the
background color: before drawing anything, the
whole Arealist Pro area is erased using this color
Default is light gray
ALP_Area_MiscColor3 v 4 4 color #FFEEEEEE Area color left of the horizontal scrollbar
Default is light gray
ALP_Area_MiscColor4 v 4 4 color #FFEEEEEE Area color right of the horizontal scrollbar
Default is light gray
ALP_Area_NumFtrLines v 4 4 long int 1 0 64 Number of lines within the footer
0 = variable height
ALP_Area_NumHdrLines 4 v 4 long int 1 0 64 Number of lines within the header
0 = variable height
ALP_Area_NumRowLines v v (4 long int 1 0 64 Number of lines within the row
0 = variable height
ALP_Area_ResizeDuring v v (4 bool false (0)
ALP_Area_RowDivColor v v (4 color #FF808080 Row divider color (default is gray)
ALP_Area_RowHeight v real Initial height of every row

ArealList Pro Area Properties

Constant

ALP_Area_RowHeightFixed

Get

Set Per Type

Arealist Pro Area Display Properties

4 4 bool

Default

true (1)

Min

Max

@

Properties by Theme

Comments

Deprecated, superseded by ALP_Area_
NumRowLines/ALP_Area_NumHdrLines/
ALP_Area_NumFtrLines with value(s) 0

| 227

ALP_Area_RowIndent

point

3;1

Horizontal and vertical indents in points

The first value represents the horizontal indent
(left and right) and the second value is the
vertical indent (top and bottom)

ALP_Area_RowIndentH

real

64

Horizontal indent for the rows, in points

ALP_Area_RowlIndentV

real

64

Vertical indent for the rows, in points

ALP_Area_RowsInGrid

long int

20

Number of rows in grid

ALP_Area_ShowColDividers

RSN S

RSN S
RISN[SN S

long int

Show column dividers
(using ALP_Area_ColDivColor):

bit 0: draw over data and footer

bit 1: hide footer dividers (bit 0 ignored if bits 0
and 2 off)

bit 2: draw last column divide

ALP_Area_ShowFocus

4 4 bool

true (1)

Show focus ring

ALP_Area_ShowFooters

AN

bool

AN
AN

false (0)

Show footers

ALP_Area_ShowHScroll

long int

Oor1

Show horizontal scrollbar:

0 = automatic, hidden

1 = automatic, shown

2 = manual, always hidden

3 = manual, always shown

Default value is 0 or 1 depending on data and
area width

ALP_Area_ShowRowDividers

4

4 4 bool

false (0)

Show row dividers
(using ALP_Area_RowDivColor)

ALP_Area_ShowSortIndicator

4

long int

If 0, no triangle (in header mode = 0) or no
underline (header mode > 0) is drawn

When both ALP_Area_HeaderMode and
ALP_Area_ShowSortIndicator properties are not
zero, the v8 sort order button is displayed above
the vertical scrollbar

On Windows Vista, 7 and 8, value 2 draws the
sort (non native) triangle to the right, not on top.

ALP_Area_ShowVScroll

4 4 bool

true (1)

Show vertical scrollbar

ALP_Area_ShowWidths

long int

Show column widths (and column number +
column source) in a tooltip when the mouse is
over a header or any cell and the three main
modifier keys are pressed (command-option-shift
on MacOS, ctrl-alt-shift on Windows)

Useful when setting up an area and you want to
set the column widths manually

0 = don’t display the width
1 = display (cmd-option-shift down + mouse
pointer over a header cell)

2 = display, but only in interpreted mode (when
host DB is compiled, same as 0; component can
be compiled)

ALP_Area_SmallScrollbar

4

4 4 bool

false (0)

Use small scrollbars

ALP_Area_TopRow

4

long int

The row number of the first (possibly partially)
visible row on screen

ArealList Pro Area Properties

@

Properties by Theme

| 228

Constant Get Set Per Type Default Min Max Comments
Arealist Pro Area Display Properties
ALP_Area_UsetEllipsis v v v longint 0O 0 2 ArealList Pro will automatically truncate data and
display the standard ellipsis (...) when columns
are resized smaller than the displayed data:
0 =none
1 = trailing for left aligned text, center
otherwise
2 = trailing for left aligned text, leading for right
aligned text, center otherwise
ArealList Pro Area Drag & Drop Properties
Constant Get Set Per Type Default Min Max Comments
ArealList Pro Area Drag & Drop Properties
ALP_Area_DragAcceptColumn v v v bool false (0) Accept column drag when destination (this area)
does not have
ALP_Area_DragDstColCodes set
OBSOLETE: use Drag access codes instead
ALP_Area_DragAcceptLine v v v bool false (0) Accept line drag when destination (this area)
does not have
ALP_Area_DragDstRowCodes set
OBSOLETE: use Drag access codes instead
ALP_Area_DragColumn v 4 v longint 0 0 3 Allow a column drag when source (this area)
does not have
ALP_Area_DragSrcColCodes set:
0=no
1 =inside area
2 = outside of area
3 = both inside and outside of area
OBSOLETE: use Drag access codes instead
ALP_Area_DragDataType v long int Dragged data:
1 =row(s)
2 = column
3 =cell(s)
ALP_Area_DragDstArea v long int Destination area
ALP_Area_DragDstCell v long int Destination area grid cell
ALP_Area_DragDstCellCodes v v v text Drag destination cell codes
The format is a list of codes separated by ‘|’
ALP_Area_DragDstCol ("4 long int Destination area column
ALP_Area_DragDstColCodes v v v text Drag destination column codes
The format is a list of codes separated by ‘|’
ALP_Area_DragDstProcessID v long int 4D'’s process ID of destination area
ALP_Area_DragDstRow v long int Destination area row
ALP_Area_DragDstRowCodes v 4 v text Drag destination row codes

The format is a list of codes separated by ‘|’

ArealList Pro Area Properties

Constant

ALP_Area_DragLine

Get

Set

Per

Type

Default

Min

@

Properties by Theme

Max Comments

Arealist Pro Area Drag & Drop Properties
v v v

long int

0

0

6

Allow a line drag when source (this area) does

not have

ALP_Area_DragSrcRowCodes set:

0=no

1 =inside area

2 = outside of area

3 = both inside and outside of area

4 = inside area w/o option key

5 = outside of area w/o option key

6 = both inside and outside of area w/o option
key

OBSOLETE: use Drag access codes instead

| 229

ALP_Area_DragOptionKey

bool

false (0)

Drag rows using option key

ALP_Area_DragProcessID

long int

4D'’s process ID of this area

ALP_Area_DragRowMultiple

AN

AN

bool

false (0)

Allow multiple rows to be dragged

ALP_Area_DragRowOnto

RIS K

bool

true (1)

Show drag feedback:
True: onto a row
False: between rows

ALP_Area_DragScroll

long int

30

30

Size of frame around the ArealList Pro area
border where dragging will start area scrolling

When the user drags something near the
Arealist Pro area border, the contents will be
scrolled

ALP_Area_DragSrcArea

long int

The dropped ArealList Pro area

Zero if a different object was dropped (or AreaList
Pro area from another application)

ALP_Area_DragSrcCell

long int

Source area grid cell

ALP_Area_DragSrcCellCodes

text

Drag source cell codes
The format is a list of codes separated by ‘|’

ALP_Area_DragSrcCol

long int

Source area column

ALP_Area_DragSrcColCodes

text

Drag source column codes
The format is a list of codes separated by ‘|’

ALP_Area_DragSrcRow

long int

Source area row (only if AreaList Pro is dropped
on Arealist Pro)

ALP_Area_DragSrcRowCodes

text

Drag source row codes
The format is a list of codes separated by ‘|’

ArealList Pro Area Properties

ArealList Pro Area DropArea Properties

Arealist Pro Drop Areas are obsolete, and are included for backwards compatibility. For more information about using Drag and
Drop, see the Drag and Drop section.

@

Properties by Theme

| 230

Constant Get Set Per Type Default Min Max Comments
AReal.ist Pro Area DropArea Properties
ALP_Drop_DragAcceptColumn v v 4 bool true (1) Accept column drag when source does not have
ALP_Area_DragSrcColCodes set
OBSOLETE: use Drag codes instead
ALP_Drop_DragAcceptLine v v 4 bool true (1) Accept line drag when source does not have
ALP_Area_DragSrcRowCodes set
OBSOLETE: use Drag codes instead
ALP_Drop_DragDstCodes v v v text Drag destination codes
The format is a list of codes separated by ‘|’
ALP_Drop_DragProcessID 4 long int 4D’s process ID of this area
ALP_Drop_DragSrcArea v long int The dropped Arealist Pro area
ALP_Drop_Kind v v text Object kind = “DropArea”
ALP_Drop_Name v text area
name
from
design
ALP_Drop_XML v v text Full description of the drop area in XML
Arealist Pro Area Entry Properties
Constant Get Set Per Type Default Min Max Comments
Arealist Pro Area Entry Properties
ALP_Area_ClickDelay v 4 v longint 30 -2 300 Delay to start editing (in 1/60 sec.):
-2 = use current double-click time
0 = disable
May be used with the area reference set to 0
(newly created areas will use this mode)
ALP_Area_EntryAllowArrows v v v bool false (0) Arrow keys are used to move to next entry cell
ALP_Area_EntryAllowReturn v v (4 bool false (0) Allow RETURN in text
ALP_Area_EntryAllowSeconds v v v bool false (0) Allow seconds in time entry
ALP_Area_EntryCell v cell Row and grid cell number of current entry (row,
cell)
ALP_Area_EntryClick (4 v v longint 0 0 7 How to start an entry:

0 = no way (even click-hold)
1 = single click

2 = double click

3 = command-double click
4 = shift-double click

5 = option-double click

6 = control-double-click

7 = click-hold only

May be used with the area reference set to zero
(newly created areas will use this mode)

ArealList Pro Area Properties

Constant

ALP_Area_EntryColumn

Get Set Per Default Min Max

Type
Arealist Pro Area Entry Properties

4 long int

@

| 231
Properties by Theme

Comments

Column number of edited cell

ALP_Area_EntryExit

(4 4 bool

Exit the currently edited cell

If there is not a cell being entered then
ALP_Area_EntryExit will have no effect

ALP_Area_EntryFirstClickMode

v v v longint 0O 0 3

Determines how the first click is handled upon
beginning entry (when using numeric/text entry)

0 = click is routed to the entry widget (default
behavior)

1 = ignore click, select all when the value is
NULL or the formatted value is empty string
(numeric, date, time)

2 = ignore click, select all when the value is NOT
NULL (numeric, date, time, text)

3 = ignore click, always select all (same behavior
as when tabbing between the fields)

Note: explicit setting of the highlighted text in the
Cell entered callback is always honored

ALP_Area_EntryGotoCell

4 v cell

Row and grid cell number to start entry in (row,
cell)

ALP_Area_EntryGotoColumn

long int

Column number to start entry in (first grid cell
showing this column will be used)

ALP_Area_EntryGotoGridCell

long int

Grid cell number to start entry in (cell in grid, not
column number)

ALP_Area_EntryGotoRow

long int

Row number to start entry in

ALP_Area_EntryGridCell

AN

long int

Grid cell number of edited cell

ALP_Area_EntryHighlight

AN
AN

range

Entry highlight in the form:
String ($startOfSelection)+","
+String ($endOfSelection)

ALP_Area_EntryHighlightE

v long int

Entry highlight end

ALP_Area_EntryHighlightS

v long int

Entry highlight start

ALP_Area_EntryInProgress

bool

A cell is currently being edited

ALP_Area_EntryMapEnter

RIS

longint O 0 3

Map Enter key to:

0 = nothing (ignore)

1=Tab

2 = Return

3 = Tab for text fields, Return otherwise

ALP_Area_EntryModified

4 bool

Currently edited cell value is modified
Note: when a real number is to be edited, the
cell is marked as modified if Num (String

(oldValue)) # Num (currentValue) in order to
ignore “epsilon” differences

ALP_Area_EntryPrevCell

cell

AN

Row and grid cell number of previous entry (row,
cell)

ALP_Area_EntryPrevColumn

long int

Previously edited column number

ALP_Area_EntryPrevGridCell

long int

Previously edited grid cell number

ALP_Area_EntryPrevRow

long int

Previously edited row number

ALP_Area_EntryRow

RIS

long int

Row number of edited cell

ArealList Pro Area Properties

Constant

ALP_Area_EntrySelectedText

Get Set Per Type Default Min

Arealist Pro Area Entry Properties

text

@

Properties by Theme

Max Comments

Selected text (entry must be in progress)

| 232

ALP_Area_EntrySkip

bool

Skip current cell

ALP_Area_EntryText

text

Entry text (entry must be in progress)

ALP_Area_EntryValue

Current entry value

ALP_Area_lgnoreMenuMeta

RSN
RIS SS

4 bool

Do not interpret meta characters when building
popup menu

May be used with the area reference set to 0
(newly created areas will use this mode)

ALP_Area_IgnoreSoftDeselect

bool false (0)

Ignore soft deselect (treat it as hard deselect)

See the explanation in the Callbacks chapter

May be used with the area reference set to 0
(newly created areas will use this mode)

ALP_Area_
CallbackMethEntryEnd

text

End entry callback function. The return value can
be used for validation; the default value is False

ALP_Area_
CallbackMethEntryStart

text

Start entry callback method (area; action;
{recLoaded])

ALP_Area_CallbackMethPopup

text

Popup entry callback method (area; row;
column; dataType)

-> bool:Handled

For popup handling: used when a popup is
clicked but no popup array/menu is defined

The callback is called as function: return False
to invoke internal implementation, otherwise use
AL_SetAreaXXXProperty

($1;ALP_Area_EntryValue;$value) to actually
set the new value and return True

See the example in the Callbacks section

ALP_Area_UseDateControls

v v v bool

Use native Date control for date entry
Note: can’t be cleared to zero

May be used with the area reference set to 0
(newly created areas will use this mode)

ALP_Area_UseTimeControls

v (4 (4 bool

Use native Time control for time entry

May be used with the area reference set to 0
(newly created areas will use this mode)

ArealList Pro Area Properties

ArealList Pro Area Event Properties

Constant

ALP_Area_AlpEvent

Get Set Per

v

Type

Arealist Pro Area Event Properties

long int

@

Properties by Theme

Max Comments

Last AreaList Pro event: see Areal.ist Pro Event
codes

May be used with AreaRef set to zero (last event
in any area)

ALP_Area_CallbackMethDeselect

text

Area deselected callback method (area)
See the Callbacks topic for more info

ALP_Area_CallbackMethMenu

text

Edit menu callback function (area; event) ->
long:flags

See the Callbacks topic for more info

See the list of the Edit menu constants

ALP_Area_CallbackMethOnEvent

v Vv vV

text

Event callback function (area; alpEvt; 4Devent;
column; row; modifiers)

See the Callbacks topic for more info

ALP_Area_CallbackMethSelect

text

Area selected callback method (area)

ALP_Area_ClickedCell

long int

Last clicked grid cell

ALP_Area_ClickedCol

long int

Last clicked column

ALP_Area_ClickedRow

long int

Last clicked row
See Row Numbering

ALP_Area_DoubleClick

AN

bool

Last click is double click

ALP_Area_Event

AN

long int

Kind of event:
1 = mouse down
3 = key down
5 = auto key
18 = mouse moved
21 = area selected
22 = area deselected
25 = scroll
30 = undo
31 =cut
32 = copy
33 = paste
34 = clear
35 = select all
36 = redo
39 = mouse wheel

ALP_Area_EventChar

text

Char (string) from keyboard

ALP_Area_Event_Filter

long int

Mask to define which events should not be reported

Currently only bit 0 is defined: don’t report
AL Mouse moved event (18) if set to 1

ALP_Area_EventKey

text

Key code

ALP_Area_EventModifiers

long int

Event modifiers:
256 = command
512 = shift

1024 = caps lock

2048 = option

4096 = control

ALP_Area_EventPosH

long int

Horizontal mouse position

ALP_Area_EventPosV

long int

Vertical mouse position

| 233

ArealList Pro Area Properties

@

Properties by Theme

Constant Get Set Per Type Default Min Max Comments
Arealist Pro Area Event Properties
ALP_Area_RollOverCell v long int Current cell (where the mouse is positioned)
See Example 15 in the Tutorial section
ALP_Area_RollOverCol v long int Current column (where the mouse is positioned)
ALP_Area_RollOverRow v long int Current row (where the mouse is positioned)
See Row Numbering
ALP_Area_SendEvent v v long int Set custom event and execute the object method
ALP_Area_AlpEvent will contain this event,
ALP_Area_Event will be 0
Use e.g. -100 to not confuse your own code with
regular ArealList Pro event codes
Usable in subforms to CALL SUBFORM
CONTAINER
ALP_Area_ToolTip v v text Tool Tip text

To be set from the event callback function

ArealList Pro Area Plugin Properties

Note: the following properties always expect 0 as the area reference: the workstation global setting is accessed.

Constant

ALP_Area_CalendarColors

Get

v

Set Per Type Default Min
ArealList Pro Area Plugin Properties

v text

Max Comments

8 ARGB colors separated with “|” to be used by
the date «calendar» popup

First 5 colors define object backgrounds: active
month, inactive month, selected date, current
date, current selected date

Next 2 colors define foreground: numbers in active
month, numbers in inactive month

8" value is the popup background color; it
needs a non-zero alpha channel to be set, e.g.
#FFEOQF1FF instead of #E9F1FF

When not set explicitly, default colors depend
on ALP_Area_CalendarLook

To restore the default colors (as if
ALP_Area_CalendarColors was not set),
pass an empty text value

Default values are:
“#00FFFFDD|#00EEEEEE|#00EEAAAA|
#00FF8888|#00FF5555|#00000000]|
#00444444|#00CCCCCC”

for the regular (default) calendar look, and:
“#FFFFFFFE|#FFFFFFFE|#00EEEEEE|
#00FF8888|#008F8F8F|#00000000|
#00444444|#FFFFFFFC”

for the alternate Date popup (according to
ALP_Area_CalendarLook)

| 234

ArealList Pro Area Properties

@ |235

Properties by Theme

Constant Get Set Per Type Default Min Max Comments
ArealList Pro Area Plugin Properties

ALP_Area_CalendarLook v v bool false (0) If set, AreaList Pro will use an alternate Date
popup (“Windows look”)

When ALP_Area_CalendarColors is not set
explicitly, the color scheme is different and the
“correct one” will be used (actually the
ALP_Area_CalendarColors value is updated
when ALP_Area_CalendarLook is modified)

ALP_Area_Copyright v text Copyright of the ArealList Pro plugin

ALP_Area_DefFmtBoolean v v text Default format for Boolean arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the AreaList Pro bundle

ALP_Area_DefFmtDate v v text Default format for Date arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the ArealList Pro bundle

ALP_Area_DefFmtinteger v v text Default format for Integer arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the AreaList Pro bundle

ALP_Area_DefFmtLong v Vv text Default format for Long arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the Arealist Pro bundle

ALP_Area_DefFmtPicture 4 v text Default format for Picture arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the AreaList Pro bundle

ALP_Area_DefFmtReal v v text Default format for Real arrays

Initialized from the “AreaList™ Pro Format
Defaults” group from the “ALP.xIf” file located in
the localized subfolder of the Resources folder in
the AreaList Pro bundle

ALP_Area_FillNumberSign v v bool false (0) If set to 1 (True), string formatting replaces the
“number sign” placeholders ‘# with non-breaking
space (old behavior), otherwise unused part of
the format string is removed

ALP_Area_LastError 4 4 long int Last error in ANY ArealList Pro area

ALP_Area_Path

AN

text Path to the ArealList Pro plugin

ALP_Area_TraceOnError v v int 1 0 3 Invoke the 4D debugger in interpreted and/or an
alert in compiled if a command causes an error,
and it is a command that does not return an error
code
bit 0: trace in interpreted (values 1 & 3)

bit 1: alert in compiled (values 2 & 3)

ALP_Area_Version v text Version of the ArealList Pro plugin

Note that getting this property will not trigger the
registration dialog if AreaList Pro is not registered
(allows to check version before registering)

ArealList Pro Area Properties

@ |236

Properties by Theme

ArealList Pro Area Selection Properties

Constant Get Set Per Type Default Min Max Comments
Arealist Pro Area Selection Properties
ALP_Area_SelClick v v v long int 2 0 3 What to report when the user clicks:
0 = nothing

1 = single and double click reports single click
2 = report single and double clicks

3 = report either single click or double click, not
both (legacy v8.x mode)

ALP_Area_SelCol v v long int Selected column
ALP_Area_SelCreateSet v v text empty Name of the set to create after selection change
by user

The area must be in fields mode and row
selection mode

This property was also called ALP_Area_
SelSetName in some versions

ALP_Area_Select v long int Number of selected rows/cells (for multiple row/
cell selection mode only)
ALP_Area_SelGotoRec v v bool false (0) Load record after selection change using GOTO

SELECTED RECORD
The area must be in fields mode and row
selection mode
Hint: in read/write mode the record will be locked
ALP_Area_SelHighlightMode v v v long int 0 0 2 Change the way the selected cells/rows are
highlighted:
0 = system highlight color used as
background color (default)
1 = invert colors (legacy mode)
2 = blend the system highlight color with 75%
alpha (192)
ALP_Area_TypeAheadEffect v v long int 0 -2 2 -2 = report AL Typeahead event (do nothing else)
-1 = ignore typeahead (do nothing)
0 = select first matching row (value >= “search”)
1 = select first matching row if selection is

empty and scroll view to show first matching row
otherwise

2 = change the selection to matching rows (value
= “search@”)

Set to 1 to get the old ArealList Pro v8 behavior:
on typeahead, the selection is not changed when
selection mode is multiple rows selection and the
current selection is not empty - only the view is
scrolled to show the first matching row

Was ALP_Area_SelKeepOnTypeAhead (value
“selT”) in previous versions

ALP_Area_TypeAheadFieldMode ¢/ v bool false (0) Set to True (1) to allow typeahead in field mode

Note: when ALP_Area_TablelD > 0
and ALP_Area_TypeAheadFieldMode = 0,
typeahead is fully ignored

ALP_Area_TypeAheadString v v text This property returns the string typed by the user
used in typeahead (after the typeahead changed
the selection)

ArealList Pro Area Properties

Constant

ALP_Area_TypeAheadTime

Get Set Per

ArealList Pro Area Selection Properties

v v

Type

long int

Default

2 * double
click time
(from OS)

Min

-1

Max

300

@

Properties by Theme

Comments

Time in ticks (1/60 s) used to determine if a new
typeahead is starting (maximum time between
two keystrokes to be handled as one string)

Note: setting to less than 5 will set the value to
default

| 237

ALP_Area_SelMultiple

bool

false (0)

Allow selection of multiple rows (in selection
mode: “rows” = 0)

Ignored if ALP_Area_SelType is not 0

ALP_Area_SelNoCtrlSelect

bool

false (0)

Disable row selection when control-click occurs
on unselected row

ALP_Area_SelNoDeselect

bool

false (0)

Disable row selection (deselection of other rows)
when click occurs in already selected row and no
modifier keys are held down.

ALP_Area_SelNoHighlight

bool

false (0)

Disable row highlight of selected rows (in
selection mode: “rows” = 0)

Ignored if ALP_Area_SelType is not 0

ALP_Area_SelNoAutoSelect

bool

false (0)

If set to true, a click on a popup in an unselected row
does not select the row

Automatically set to true when compatibility mode
is turned on

ALP_Area_SelNone

bool

false (0)

Allow no selection (in selection mode: “rows” = 0)
Ignored if ALP_Area_SelType is not 0

ALP_Area_SelPreserve

bool

false (0)

Preserve row selection when sorting 4D's selection of
rows: if set to true and area is in field mode, the row
selection will be restored after sort

Note: can be time-consuming for large
selections, especially on client/server

ALP_Area_SelRow

long int

Selected row: last clicked (or first row in selection
when cmd-clicked to deselect the row in multiple
row selection mode)

ALP_Area_SelType

long int

0

Selection mode:
0 = rows

1 = single cell

2 = multiple cells

ArealList Pro Area Sort Properties

Constant

Get Set Per

Type

Default

Min

Max

ArealList Pro Area Sort Properties

Comments

ALP_Area_AllowSortEditor v v v bool false (0) Allow sort editor by user (cmd-click on header)
ALP_Area_DontSortArrays 4 4 4 bool false (0) Do not sort arrays

Note: when set to true, arrays are not

reordered by the sort

Internal array of sort order is maintained

See AL_GetObjects with property

ALP_Object_Sort

See also the Internal Sorting topic
ALP_Area_ShowSortEditor v v Show sort editor

The AL_GetArealongProperty getter
command returns 1 if the user clicked Sort,
0 otherwise

ArealList Pro Area Properties

@ |238

Properties by Theme

Constant Get Set Per Type Default Min Max Comments
ArealList Pro Area Sort Properties

ALP_Area_Sort v long int Number of elements in sort list (the number of
columns that were sorted)

ALP_Area_SortCancel v v v text Sort editor Cancel button label

If empty, defaults to "Cancel" or its translation
from the “ALP.xIf” file located in the localized
subfolder of the Resources folder in the ArealList

Pro bundle
ALP_Area_SortColumn v v long int Sorted column number
(use ALP_Area_SortList to sort)
ALP_Area_SortDuring v v v bool false (0) Sets a flag for a “permanent” sort = ie,
automatically keep the data sorted of it changes
ALP_Area_SortList v v (4 text Sort list
The format is a comma-separated list of column
numbers

Use negative number for descending order

ALP_Area_SortListNS v v text “No sort” sort list

See Taking control of the sort for more
information and an example

The format is a comma-separated list of column
numbers

Use negative number for descending order

Only sets the sort list, does not actually sort the
data

ALP_Area_SortOK v v v text Sort editor OK button label

If empty, defaults to "Sort" or its translation from the
“ALP.xIf” file located in the localized subfolder of
the Resources folder in the AreaList Pro bundle

ALP_Area_SortOnLoad v v v bool false (0) Sort data on area initialization (when loaded from
advanced properties or XML)

ALP_Area_SortPrompt 4 v 4 text Prompt for sort editor

If empty, defaults to "Select columns to sort" or its
translation from the “ALP.xIf” file located in the
localized subfolder of the Resources folder in the
ArealList Pro bundle

ALP_Area_SortTitle v v v text Title for sort editor

If empty, defaults to "Sort Options" or its
translation from the “ALP.xIf” file located in the
localized subfolder of the Resources folder in the
ArealList Pro bundle

ALP_Area_UserSort v v v long int 1 0 3 Sort by user:
0 = disabled
1 = enabled
2 = bypassed

3 = only indexed fields

ArealList Pro Area Properties

ArealList Pro Column Properties

Use these constants with commands in the Columns command theme:

AL_GetColumnLongProperty
AL_GetColumnPtrProperty
AL_GetColumnRealProperty
AL_GetColumnTextProperty
AL_SetColumnLongProperty
AL_SetColumnPtrProperty
AL_SetColumnRealProperty

AL_SetColumnTextProperty

@ ..

Properties by Theme

For some of the Column properties (mainly style properties), you can use 0 as the Column Number to accessing the default values

for newly created (or re-initialized) columns.

If the Column Number is -2, the property will be applied to all existing columns (from 1 to ALP_Area_Columns).

ArealList Pro Column Properties

Column General Properties

@

Properties by Theme

| 240

Constant Get Set Per Type Default Min Comments
Column General Properties
ALP_Column_Attributed v v v bool false (0) Uses attributed (multi-style) text:
0=no, 1 =yes
See also Arealist Pro Text Style Tags
ALP_Column_CalcHeight v v v bool false (0) Automatically set row height based on data in
this column
Row heights are fixed when ALP_Area_
NumRowLines is non-zero
Otherwise the row heigh is determined by
columns having ALP_Column_CalcHeight = 1
This also holds for headers and footers, see
Row Numbering
ALP_Column_Calculated 4 v 4 bool This column is a calculated column
Can only be set in array mode, use
AL_AddCalculatedColumn in field mode
ALP_Column_Callback 4 v 4 text Callback method for a calculated column
(area; column; type; ptr; first; count)
If the ArealList Pro area displays several
Calculated Columns, the callback methods will
be called in the column number order
ALP_Column_DisplayControl v v v long int -1 -1 Display control type:
-1 = default (formatted value)
0 = checkbox without title
1 = small checkbox without title
2 = mini checkbox without title
(0, 1 and 2 are identical on Windows)
3 = mapped through
ALP_Column_PopupArray
+ALP_Column_PopupMap
or ALP_Column_PopupMenu
(these 3 properties have to be defined)
4 = use pictures (see Displaying custom
checkboxes using pictures from the 4D
Picture Library)
ALP_Column_Enterable v v v long int 1 0 Enterablility:
0 = not enterable
1 = by keyboard
2 = by popup
3 = by keyboard & popup
4 = by popup ignoring menu meta
5 = by keyboard & popup ignoring menu meta
ALP_Column_EntryControl (4 v v long int 0 0 Entry control, depending upon column type
(boolean or integer/long integer)
For boolean columns:
0 = checkbox without title
1 = checkbox with title
2 = radio buttons
For integer/long integer columns:
0 = 2-states checkbox (values 0, 1)
1 = 3-states checkbox (values 0, 1, 2)
(ALP_Column_DisplayControl must be set to 0,
1, 2 or 4 in order to use checkboxes in integer/
long integer columns)
ALP_Column_Filter v v v text Entry filter

ArealList Pro Column Properties

Constant

ALP_Column_FindCell

Get

Set

Per

Default Min Max

Type
Column General Properties

long int

@

Properties by Theme

Comments

Find the first grid cell number showing data from
the column

| 241

ALP_Column_FooterText

AN

text

Footer text

ALP_Column_Format

text

Format
For picture columns:

"0" = the picture will be truncated, if necessary,
and justified to the upper left (default)

"1" = the picture will be truncated, if necessary,
and centered in the cell

"2" = the picture will be scaled to fit the cell

"3" = the picture will be scaled to fit the cell, and
remain proportional to its original size

"4" = the picture will be scaled to fit the cell,
remain proportional to its original size, and
centered in the cell

ALP_Column_FromCell

AN

long int

Get the column number from the grid cell
number

ALP_Column_HeaderText

text

Header text

ALP_Column_ID

long int

Column number (numbered from 1)

ALP_Column_Indexed

bool

Field is indexed

ALP_Column_Kind

RIS

text

Object kind = “Column”

To access default column font properties, use
AreaRef and Column set to zero

ALP_Column_Length

long int

Size of the alpha field Zero means it is not an
alpha (length-limited) field

ALP_Column_Locked

bool

Column is locked

ALP_Column_PopupArray

text/
array

Use a pointer to an array

For Get when using an array: the array type must
match

See the Value Mapping example

If text is to be used (not array), elements are
separated by Char(3) (ASCII ETX)

To ignore menu meta characters in a row, start
that row with Char(1) (ASCIlI SOH)

ALP_Column_PopupArrayKind

v

long int

Type of the popup array (4D constants):
5 = Is undefined

14 = Is real array

15 = Is integer array

16 = Is longint array

17 = |Is date array

18 = Is text array

ALP_Column_PopupMap

text/text
array

If set, the popup will be built from this array,
but values will be used from
ALP_Column_PopupArray

See the Value Mapping example

If text is to be used (not array), elements are
separated by Char(3) (ASCII ETX)

To ignore menu meta characters in a row, start
that row with Char(1) (ASCIl SOH)

ArealList Pro Column Properties

@ |242

Properties by Theme

Constant Get Set Per Type Default Min Max Comments
Column General Properties

ALP_Column_PopupMenu v v text Associated 4D menu

Use Create Menu
See the Value Mapping example

ALP_Column_PopupName v v v text Internal (used in advanced properties)
ALP_Column_Reveal v v n/a Reveal (make visible) this column
ALP_Column_SortDirection v v long int 0 -1 1 Current sort direction
ALP_Column_ScrollTo v v n/a If visible, scroll the area to position this
column on the left
ALP_Column_Source v v text Data source
Array name or [MyTable]MyField
ALP_Column_Spellcheck 4 v 4 bool Not implemented
ALP_Column_Type v v long int Data type (4D constants):
0 = Is Alpha Field
1 =1s Real
2 =1s Text
3 = Is Picture
4 =|s Date
6 = Is Boolean
8 =Is Integer
9 =1s Longlint
11 =1Is Time
ALP_Column_Uppercase 4 4 4 bool Make uppercase
ALP_Column_UserText v v v text Text for free use by developer (XML or other),
associated to the column
ALP_Column_Visible v v v bool true (1) Column is visible
ALP_Column_Width v v v real 0 0 32000 Column width in points

These two values are related, and the setter will
change both properties at the same time if the
value is non-zero (both properties will have this
same value)

A zero value set to either property means
automatic width: ALP_Column_WidthUser will
return zero, but ALP_Column_Width will return the
actual width calculated from the data

When the user sets the value by doing a

column resize, then again, both properties will be
ALP_Column_WidthUser 4 4 4 real 0 0 32000 set to the same value

But when the user double-clicks in the column
resize, ALP_Column_WidthUser will be set to zero
and ALP_Column_Width will be calculated from
the data

ALP_Area_ColumnResize must be set to true
to enable column width changes by the setter or
the user

ALP_Column_XML v v text Full description of the column in XML

ArealList Pro Column Properties

Column Header Style Properties

@

Properties by Theme

| 243

Constant Get Set Per Type Default Min Max Comments
Column Header Style Properties
ALP_Column_HdrBackColor v v v color #00FFFFFF Header background color
(unused when ALP_Area_HeaderMode = 0)
ALP_Column_HdrBaseLineShift 4 v 4 real 0 -100 256 Baseline shift
ALP_Column_HdrFontName 4 v 4 text Verdana on Header font name
Windows
Lucida
Grande on
MacOS
ALP_Column_HdrHorAlign v v v long 0 0 5 Header horizontal alignment:
int 0 = default
1 = left
2 = center
3 =right
4 = justify
5 = full justify
ALP_Column_HdrHorizontalScale ¢/ v 4 real 1 0,1 100 Header horizontal scale
ALP_Column_HdrLineSpacing (4 v v real 1.0 1 10 Header line spacing
ALP_Column_HdrRotation v v v real 0 -360 360 Rotation of text in header
ALP_Column_HdrSize (4 4 v real 12 on 4 128 Header font size
Windows
13 on
MacOS
ALP_Column_HdrStyleB v v v bool false (0) Header font style = bold
ALP_Column_HdrStyleF v v v longint O 0 7 Header font style, using 4D style constants (e.g.
Bold, ltalic, etc.)
ALP_Column_HdrStylel v v v bool false (0) Header font style = italic
ALP_Column_HdrStyleU v v v bool false (0) Header font style = underlined
ALP_Column_HdrTextColor 4 v 4 color #FF000000 Header font color
Default is black
ALP_Column_HdrVertAlign v v v long 2 0 3 Header vertical alignment:
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_HdrWrap v v v bool false (0) Wrap long lines in header

ArealList Pro Column Properties

Column Footer Style Properties

@

Properties by Theme

| 244

Constant Get Set Per Type Default Min Max Comments
Column Footer Style Properties
ALP_Column_FtrBackColor v v v color #00FFFFFF Background color
Default is transparent (no color)
ALP_Column_FtrBaseLineShift v v v real 0 -100 256 Footer baseline shift
ALP_Column_FtrFontName v v v text Verdana on Footer font name
Windows
Lucida
Grande on
MacOS
ALP_Column_FtrHorAlign v v v long 0 0 5 Footer horizontal alignment:
int 0 = default
1 = left
2 = center
3 =right
4 = justify
5 = full justify
ALP_Column_FtrHorizontalScale ¢/ 4 4 real 1 0,1 100 Footer horizontal scale
ALP_Column_FtrLineSpacing v v 4 real 1.0 1 10 Footer line spacing
ALP_Column_FtrRotation v v v real 0 -360 360 Rotation of text in footer
ALP_Column_FtrSize v v v real 12 on 4 128 Footer font size
Windows
13 on
MacOS
ALP_Column_FtrStyleB v v v bool false (0) Footer font style = bold
ALP_Column_FtrStyleF v v v long 0 0 7 Footer font style, using 4D style constants
int (e.g. Bold, ltalic, etc.)
ALP_Column_FtrStylel v v v bool false (0) Footer font style = italic
ALP_Column_FtrStyleU v v v bool false (0) Footer font style = underlined
ALP_Column_FtrTextColor v v v color #FF000000 Footer font color
Default is black
ALP_Column_FtrVertAlign v 4 (4 long 2 0 3 Footer vertical alignment:
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_FtrWrap 4 v (%4 bool false (0) Wrap long lines in footer

ArealList Pro Column Properties

Column List Style Properties

@ |245

Properties by Theme

Constant Get Set Per Type Default Min Max Comments
Column List Style Properties
ALP_Column_BackColor 4 v 4 color #00FFFFFF Background color
Default is transparent (no color)
ALP_Column_BaseLineShift v v v real 0 -100 256 Baseline shift
ALP_Column_FontName v v v text Verdana on List font name
Windows
Lucida
Grande on
MacOS
ALP_Column_HorAlign v v v long 0 0 5 List horizontal alignment:
int 0 = default
1= left
2 = center
3 =right
4 = justify
5 = full justify
6 = align text on the decimal separator (used
only for real columns, for other type of data 6
behaves as 3)
ALP_Column_HorizontalScale v v v real 1 0,1 100 List horizontal scale
ALP_Column_LineSpacing v v v real 1.0 1 10 List line spacing
ALP_Column_Rotation (4 v v real 0 -360 360 Rotation of text in list
ALP_Column_Size v v v real 12 on 4 128 List font size
Windows
13 on
MacOS
ALP_Column_StyleB v v v bool false (0) List font style = bold
ALP_Column_StyleF (4 v (4 long 0 0 7 List font style, using 4D style constants
int (e.g. Bold, Italic, etc.)
ALP_Column_Stylel v 4 v bool false (0) List font style = italic
ALP_Column_StyleU v v v bool false (0) List font style = underlined
ALP_Column_TextColor v v v color #FF000000 List font color
Default is black
ALP_Column_VertAlign v v v long 0 0 3 List vertical alignment
int 0 = default
1=top
2 = center
3 = bottom
ALP_Column_Wrap 4 v 4 bool false (0) Wrap long lines in list

ArealList Pro Column Properties

Arealist Pro Row Properties

Use these constants with commands in the Rows command theme:

AL_GetRowLongProperty
AL_GetRowPtrProperty
AL_GetRowRealProperty
AL_GetRowTextProperty
AL_SetRowLongProperty
AL_SetRowPtrProperty
AL_SetRowRealProperty

AL_SetRowTextProperty

Row Numbering

@ |246

Properties by Theme

Row Value

Header 0

Body rows 1 to number of rows
Footer -1

Empty area below last row -2

The values above are returned by the ALP_Area_ClickedRow and ALP_Area_ RollOverRow properties:

$clickedRow:=AL_GetAreaLongProperty (area;ALP_Area_ClickedRow) //last clicked row

$rowUnder:=AL_GetAreaLongProperty (area;ALP_Area_RollOverRow) //row currently under the pointer

They can also be used to set and get properties (except the two row properties above).

The default style is None (the Column style is used: all rows default to column properties, give or take alternate row coloring when

in effect).

The row number value -2 has two meanings, depending on whether it is used to get the row information or to set a property:

m if the row number is -2, a settable row property will be applied to all existing rows (from #1 to #ALP_Area_Rows)

m the “Empty area below last row” (-2) value is reported by ALP_Area_ClickedRow or ALP_Area_RollOverRow when a click occurs

or the pointer is over the area between the last row and the footer/horizontal scrollbar/bottom of the AreaList Pro area (i.e. the

space without data rows)

ArealList Pro Row Properties

Row General Properties

@

Properties by Theme

| 247

Constant Get Set Per Type Default Min Max Comments
Row General Properties
ALP_Row_Clear v n/a Clear all properties of this row (style is actually
the only property)
ALP_Row_Height v real area’srow 0 32000 Height of the row in points
height
ALP_Row_Hide 4 4 bool Set to 1 to hide a row
ALP_Row_Kind 4 %4 text Object kind = “Row”
ALP_Row_Reveal v n/a Reveal (make visible) this row
ALP_Row_RowOffset v real Offset from top
ALP_Row_ScrollTo v v n/a If visible, scroll the area to position this row on
the top
AL_SetRowLongProperty (area; $row;
ALP_Row_ScrollTo)
Note: no property value is needed
ALP_Row_XML v v text Full description of the row in XML
Note: XML does not contain Style —
use ALP_Row_StyleXML for that
Row Hierarchy Properties
Constant Get Set Per Type Default Min Max Comments
Row Hierarchy Properties
ALP_Row_Collapse 4 v bool Collapse this row (all children will be invisible)
ALP_Row_CollapseAll v bool "Deep collapse": collapse this row and all
its children (all children will be invisible and
collapsed)
ALP_Row_Expand v v bool Show children of this row
If any child was not collapsed, more levels will
be visible
ALP_Row_ExpandAll 4 bool "Deep expand": show children of this row and all
children (all children will be visible and fully expanded)
ALP_Row_Level v long int Returns the level associated with this row (set
using ALP_Object_Hierarchy)
ALP_Row_Parent v long int Returns the immediate parent of this row (zero if
this row is at the top level)
ALP_Row_Visible v bool Returns whether this row is visible (all parents of

this row are expanded)

This has nothing to do with real visibility on screen,
but with the expanded state of all parents

ArealList Pro Row Properties

Row Style Properties

Constant Get

ALP_Row_BackColor v

Set

Per

Default Min Max

Type
Row Style Properties

color

@

Properties by Theme

Comments

Background color

ALP_Row_BaseLineShift v

real -100 256

Baseline shift

ALP_Row_ClearStyle

n/a

Clear the style of this row
The area redraws automatically

ALP_Row_Flags v

long int

Bit-mask of set features

Properties not set are inherited from the
column settings

The following flags indicate what style options
have been set at the row level:

2 = font name
4 = font size
8 = font style
16 = text color
32 = background color
64 = horizontal alignment
128 = vertical alignment
256 = wrap
512 = rotation
1024 = baseline shift
2048 = horizontal scale
4096 = line spacing
Maintained by ArealL.ist Pro and should not
normally be changed

You can clear the flag if you want to force
ArealList Pro to abandon row-specific settings

ALP_Row_FontName 4

text

Font name

ALP_Row_HorAlign 4

long int 0 5

Horizontal alignment:
0 = default

1= left

2 = center

3 =right

4 = justify

5 = full justify

ALP_Row_HorizontalScale

real 0,1 100

Horizontal scale

ALP_Row_LineSpacing

real 1.0 1 10

Line spacing

ALP_Row_Rotation

real -360 360

Rotation of text

ALP_Row_Size

real 4 128

Font size

ALP_Row_StyleB

bool

Font style = bold

ALP_Row_StyleF

long int 0 7

Font style, using 4D style constants (e.g. Bold,
Italic, etc.)

ALP_Row_Stylel

bool

Font style = italic

ALP_Row_StyleU

RIS SIS S

bool

Font style = underlined

ALP_Row_StyleXML

text

Description of the row style in XML

ALP_Row_TextColor

AN

color

Font color

ALP_Row_VertAlign

RININISIS] SIS (SN S

RIS SIS][]]S

long int 0 3

Vertical alignment:
0 = default

1=top

2 = center

3 = bottom

ALP_Row_Wrap 4

bool

Wrap long lines

| 248

ArealList Pro Row Properties

@ |249

Properties by Theme

ArealList Pro Cell Properties

Use these constants with commands in the commands in the Cells command theme:
AL_GetCellLongProperty

AL_GetCellPtrProperty

AL_GetCellRealProperty

AL_GetCellTextProperty

AL_SetCellLongProperty

AL_SetCellPtrProperty

AL_SetCellRealProperty

AL_SetCellTextProperty

If the Row Number is -2, the property will be applied to all rows displaying data (from 1 to ALP_Area_Rows) for the specified Column
Number.

If the Column Number is -2, the property will be applied to all columns in the area (from 1 to ALP_Area_Columns) for the specified
Row Number.

If both the Row Number and Column Number are -2, the property will be applied to all cells in the area.

For example, to clear all special formatting for all cells:
AL_SetCellLongProperty (area; -2; -2; ALP_Cell_ClearStyle; 0)

To clear all special formatting for cells in column 3:
AL_SetCellLongProperty (area; -2; 3; ALP_Cell_ClearStyle; 0)

To clear all special formatting for cells in row 3:
AL_SetCellLongProperty (area; 3; -2; ALP_Cell_ClearStyle; 0)

Cell General Properties

Constant Get Set Per Type Default Min Max Comments
Cell General Properties
ALP_Cell_BottomBorderColor v v v color Bottom border color
ALP_Cell_BottomBorderOffset v v v long int Bottom border offset in points
ALP_Cell_BottomBorderWidth v v v long int Bottom border width in points
ALP_Cell_Clear v n/a Clear all properties of this cell
The area redraws automatically

ALP_Cell_Enterable v v v long int -1 -1 5 Enterability:

-1 = use column default (not set)

0 = not enterable

1 = by keyboard

2 = by popup

3 = by keyboard & popup

4 = by popup ignoring menu meta

5 = by keyboard & popup ignoring menu meta

ArealList Pro Cell Properties

@

Properties by Theme

| 250

Constant Get Set Per Type Default Min Max Comments
Cell General Properties
ALP_Cell_FillColor 4 v 4 color Color used to fill the border rectangle
ALP_Cell_FormattedValue 4 text Formatted cell value
ALP_Cell_Invisible v v v bool false If set to true (1), cell content is made invisible
Invisible cells draw nothing (except borders and
disclosure triangle), are implicitly not
enterable and are not copied when using Copy
or Drag
ALP_Cell_Kind v v text Object kind = “CellOptions”
ALP_Cell_LeftBorderColor v v v color Left border color
ALP_Cell_LeftBorderOffset v v v long int Left border offset
ALP_Cell_LeftBorderWidth v v v long int Left border width
ALP_Cell_LeftlconFlags v v v long int Offset/width
Horizontal position
Vertical position
Scaling
Mask
See the section on Icon Flags for more
ALP_Cell_LeftlconID v v v long int Left icon ID (see AL_Setlcon)
ALP_Cell_Reveal v n/a Reveal (make visible) this cell
ALP_Cell_RightBorderColor v 4 v color Right border color
ALP_Cell_RightBorderOffset v v v long int Right border offset in points
ALP_Cell_RightBorderWidth v v v long int Right border width in points
ALP_Cell_RightlconFlags v v v long int Offset/width
Horizontal position
Vertical position
Scaling
Mask
See the section on Icon Flags for more
ALP_Cell_RightlconID v v v long int Right icon ID (see AL_Setlcon)
ALP_Cell_ScrollTo v v n/a If visible, scroll the area to position this cell on
the top left
ALP_Cell_TopBorderColor 4 v 4 color Top border color
ALP_Cell_TopBorderOffset v 4 v long int Top border offset in points
ALP_Cell_TopBorderWidth 4 4 v long int Top border width in points
ALP_Cell_Value v 4 Cell value (depending on the column type)
ALP_Cell_XML v v text Full description of the cell options in XML

This will return an empty value if no options have
been set for the specified cell

Arealist Pro Cell Properties

@ |251

Properties by Theme

Cell Style Properties

Constant Get Set Per Type Default Min Max Comments
Cell Style Properties
ALP_Cell_BackColor 4 v 4 color Background color
ALP_Cell_BaseLineShift 4 v 4 real -100 256 Baseline shift
ALP_Cell_ClearStyle v n/a Clear the style of this cell
The area redraws automatically
ALP_Cell_Flags v v v long int Bit-mask of set features

Properties not set are inherited from the row
settings, then the column settings

The following flags indicate what style options
have been set at the cell level:

2 = font name
4 = font size
8 = font style
16 = text color
32 = background color
64 = horizontal alignment
128 = vertical alignment
256 = wrap
512 = rotation
1024 = baseline shift
2048 = horizontal scale
4096 = line spacing
Maintained by ArealList Pro and should not
normally be changed

You can clear the flag if you want to force AreaList Pro
to abandon cell-specific settings

ALP_Cell_FontName v v v text Font name
ALP_Cell_HorAlign v v v long int 0 5 Horizontal alignment:

0 = default

1= left

2 = center

3 =right

4 = justify

5 = full justify
ALP_Cell_HorizontalScale v v v real 0,1 100 Horizontal scale
ALP_Cell_LineSpacing 4 v 4 real 1.0 1 10 Line spacing
ALP_Cell_Rotation 4 v (4 real -360 360 Rotation of text
ALP_Cell_Size v v (4 real 4 128 Font size
ALP_Cell_StyleB v v v bool Font style = bold
ALP_Cell_StyleF v v v long int 0 7 Font style, using 4D style constants (e.g. Bold,

Italic, etc.)
ALP_Cell_Stylel v v v bool Font style = italic
ALP_Cell_StyleU v v v bool Font style = underlined
ALP_Cell_TextColor v v v color Font color
ALP_Cell_VertAlign v v (4 long int 0 3 Vertical alignment:

0 = default

1=top

2 = center

3 = bottom
ALP_Cell_Wrap v v v bool Wrap long lines

ArealList Pro Cell Properties

@

Properties by Theme

ArealList Pro Object Properties

Use these properties with commands in the Objects command theme:

AL_GetObjects
AL_GetObjects2
AL_SetObjects

AL_SetObjects2

None of these properties can be persistent.

Constant Get Set Array Type Comments
Object Properties
ALP_Object_Columns 4 4 pointer Pointers to data source
All columns: add columns to the area or get a list of the area’s columns
ALP_Object_ColumnWidth v v real Current width of all columns
Must use ARRAY REAL
ALP_Object_ColumnWidthUser 4 v real Width of all columns as defined by the programmer or the user resizes
(or auto-resizes)
See ALP_Column_Width and ALP_Column_WidthUser
ALP_Object_DragDstCellCodes ¢/ v text Drag destination cell codes
Can be used with DropArea
ALP_Object_DragDstColCodes v 4 text Drag destination column codes
ALP_Object_DragDstRowCodes ¢/ 4 text Drag destination row codes
ALP_Object_DragSrcCellCodes ¢/ v text Drag source cell codes
ALP_Object_DragSrcColCodes v v text Drag source column codes
ALP_Object_DragSrcRowCodes ¢ v text Drag source row codes
ALP_Object_Fields v long int Table/field numbers of all columns
2D or two arrays
ALP_Object_FooterText v text Footer text of all columns
ALP_Object_FooterTextNH text Footer text of visible columns in grid order
ALP_Object_Grid v long int Column numbers
Use a 2D array to access colSpan & rowSpan, too
ALP_Object_HeaderText v v text Header text of all columns
ALP_Object_HeaderTextNH v text Header text of visible columns
ALP_Object_Hierarchy v v long int Hierarchy: level, expanded
2D or two arrays: you can call AL_SetObjects with a 2-dimensional array
or AL_SetObjects2 with two arrays
ALP_Object_RowHide v v bool Set to 1 to hide a row
ALP_Object_RowSelection v v long int When displaying records in row selection mode, get record

numbers of selected rows/set selection using record numbers

Note: can be time-consuming for large selections, especially on client/server

| 252

Arealist Pro Object Properties

@

Properties by Theme

| 253

Constant Get Set Array Type Comments
Object Properties
ALP_Object_Selection v 4 long int Selection
2D or two arrays: you can call AL_SetObjects with a 2-dimensional array
or AL_SetObjects2 with two arrays if the selection mode is not row selection
ALP_Object_Sort v long int Sort order = to be used with ALP_Area_DontSortArrays
ALP_Object_SortList v v long int Sort list = use negative number for descending order
ALP_Object_SortListNS v v long int Sort list = use negative number for descending order
Set only the sort list, do not actually sort the data
ALP_Object_Source v text Data source of all columns
ALP_Object_Type v long int Data type of all columns: 4D type constants can be used
Note: Is Time is returned for longint arrays formatted as time
ALP_Object_Visible v v boolean, Visible status of an object (e.g. column)
:ntege{ or For AL_SetObjects: if the array is shorter than the number of columns, the
ongin

remaining columns visible status will not be modified

Arealist Pro Object Properties

Q ..

Mapping Old Commands to the AreaList Pro v9 API|

pping Old Commands
to the Arealist Pro v9 API

The following table lists all the legacy (pre-version 9) AreaList Pro commands and describes which new command should be used
in place of each one. See the v8.5 manual for legacy commands documentation.

Where appropriate, the new commands are shown with the property that should be used.

Note: mapping of colors to the v9 format is supported, but patterns are no longer supported. They are interpreted by ArealList
Pro version 9 as transparency ratios. See Patterns.

The old commands will continue to work (other than those which are now obsolete), so you don’t have to update all your ArealList
Pro code, although it is recommended that all new or generic code is mapped to the v9 API.

Forexample: AL_GetCellEnterwould be replaced with the new command AL_GetCellPtrProperty and the property ALP_Cell_Enterable:
C_LONGINT($Row;$Column;$Result)
$err:=AL_GetCellPtrProperty (AreaRef;$Row;$Column;ALP_Cell_Enterable;->$Result)

In some cases there is more than one way to replace the old command.

Old commands

New Commands and Properties

_DatePopupArea

Unsupported

AL_DoWinResize

Obsolete

AL_DragMgrAvail

Not relevant; always true

AL_DropArea

AL_DropArea

AL_ExitCell

AL_SetArealongProperty: ALP_Area_EntryExit

AL_GetAdvProps

Unsupported (internal)

AL_GetAreaBLOB

AL_GetAreaPtrProperty: ALP_Area_UserBLOB

AL_GetAreaName

AL_GetAreaTextProperty: ALP_Area_Name

AL_GetArrayNames

AL_GetColumnTextProperty: ALP_Column_Source
AL_GetArealongProperty: ALP_Area_TablelD
AL_GetObjects: ALP_Object_Columns

AL_GetCellColor

AL_GetCellLongProperty: ALP_Cell_TextColor,
ALP_Cell_BackColor (using any color format, see Working with Colors)

AL_GetCellEnter

AL_GetCellLongProperty: ALP_Cell_Enterable

AL_GetCellHigh

AL_GetAreaTextProperty or AL_GetAreaPtrProperty:
ALP_Area_EntryHighlight, ALP_Area_EntryHighlightS, ALP_Area_EntryHighlightE

AL_GetCellMod

AL_GetAreal ongProperty: ALP_Area_EntryModified

AL_GetCellOpts

AL_GetArealongProperty: ALP_Area_SelType, ALP_Area_MoveCellOptions

Mapping Old Commands to the ArealList Pro v9 API

http://www.e-node.net/ftp/AreaListPro/8.5.2_Previous_Version/Documentation/AreaListPro8.5Manual.pdf

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 255

AL_GetCellRGBColor

AL_GetCellLongProperty: ALP_Cell_TextColor,
ALP_Cell_BackColor « Using any color format, see Working with Colors

AL_GetCellSel

AL_GetObjects: ALP_Object_Selection

AL_GetCellStyle

AL_GetCellTextProperty: ALP_Cell_FontName,
AL_GetCellLongProperty: ALP_Cell_StyleF

AL_GetCellValue

AL_GetCellPtrProperty: ALP_Cell_Value

AL_GetClickedRow

AL_GetArealongProperty: ALP_Area_ClickedRow

AL_GetColLock

AL_GetArealLongProperty: ALP_Area_ColsLocked

AL_GetColOpts

AL_GetArealLongProperty: ALP_Area_ColumnResize, ALP_Area_ResizeDuring,
ALP_Area_ColumnLock, ALP_Area_ShowWidths, ALP_Area_DragColumn,
ALP_Area_DragAcceptColumn

AL_GetColumnLongProperty: ALP_Column_Visible for column hiding

AL_GetColumn

AL_GetArealLongProperty: ALP_Area_ClickedCol

AL_GetCopyOpts

AL_GetArealongProperty: ALP_Area_CopyHiddenCols, ALP_Area_CopyFieldSep,
ALP_Area_CopyRecordSep,

AL_GetAreaTextProperty: ALP_Area_CopyFieldWrapper « New API uses Text, not single character

AL_GetCurrCell

AL_GetArealLongProperty: ALP_Area_EntryRow, ALP_Area_EntryColumn

AL_GetDragCol

AL_GetArealongProperty: ALP_Area_DragSrcCol, ALP_Area_DragDstCol, ALP_Area_DragDstArea

AL_GetDragLine

AL_GetArealLongProperty: ALP_Area_DragSrcRow, ALP_Area_DragDstRow, ALP_Area_DragDstArea

AL_GetDrgArea

AL_GetArealongProperty: ALP_Area_DragDstArea, ALP_Area_DragDstProcessID

AL_GetDrgDstCol

AL_GetArealongProperty: ALP_Area_DragDstCol

AL_GetDrgDstRow

AL_GetArealLongProperty: ALP_Area_DragDstRow

AL_GetDrgDstTyp

AL_GetArealLongProperty: ALP_Area_ DragDataType

AL_GetDrgSrcCol

AL_GetArealLongProperty: ALP_Area_DragSrcCol

AL_GetDrgSrcRow

AL_GetArealongProperty: ALP_Area_DragSrcRow

AL_GetEditedText

AL_GetAreaTextProperty: ALP_Area_EntryText/ALP_Area_EntrySelectedText

AL_GetFields

AL_GetColumnLongProperty: ALP_Column_Source, AL_GetAreaLongProperty: ALP_Area_TablelD
AL_GetObjects: ALP_Object_Columns (using [table]field format)/ ALP_Object_Fields

AL_GetFile

AL_GetArealongProperty: ALP_Area_TablelD

AL_GetFooters

AL_GetColumnTextProperty: ALP_Column_FooterText
AL_GetArealongProperty :ALP_Column_Visible
AL_GetObjects: ALP_Object_FooterText/ALP_Object_FooterTextNH

AL_GetFormat

AL_GetColumnLongProperty: ALP_Column_HorAlign, ALP_Column_HdrHorAlign,
ALP_Column_FtrHorAlign, ALP_Column_CalcHeight

AL_GetFtrStyle

AL_GetColumnTextProperty: ALP_Column_FtrFontName

AL_GetColumnRealProperty: ALP_Column_FtrSize
AL_GetColumnLongProperty: ALP_Column_FtrStyleF

AL_GetHdrStyle

AL_GetColumnTextProperty: ALP_Column_HdrFontName
AL_GetColumnRealProperty:ALP_Column_HdrSize
AL_GetColumnLongProperty: ALP_Column_HdrStyleF

AL_GetHeaderOptions

Unsupported

AL_GetHeaders

AL_GetColumnTextProperty: ALP_Column_HeaderText

AL_GetColumnLongProperty: ALP_Column_Visible
AL_GetObjects: ALP_Object_HeaderText/ALP_Object HeaderTextNH

AL_GetLastEvent

AL_GetArealLongProperty: ALP_Area_AlpEvent

AL_GetLine

AL_GetArealongProperty: ALP_Area_SelRow

AL_GetMiscOpts

AL_GetArealongProperty: ALP_Area_HideHeaders, ALP_Area_ShowFocus, ALP_Area_ShowFooters
postKey and useModernLook are unsupported

Mapping Old Commands to the ArealList Pro v9 API

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 256

AL_GetMode

AL_GetAreaPtrProperty: ALP_Area_TablelD

AL_GetPictEscape

Unsupported

AL_GetPluginPath

AL_GetAreaTextProperty: ALP_Area_Path

AL_GetPrevCell

AL_GetAreal ongProperty: ALP_Area_EntryPrevRow, ALP_Area_EntryPrevColumn

AL_GetRowOpts

AL_GetArealLongProperty: ALP_Area_SelMultiple, ALP_Area_SelNone, ALP_Area_DragLine,
ALP_Area_DragAcceptLine, ALP_Area_MoveRowOptions, ALP_Area_SelNoHighlight

AL_GetScroll

AL_GetAreaRealProperty: ALP_Area_ScrollLeft, ALP_Area_ScrollTop
* Not in rows/columns, but in points

AL_GetSelect

AL_GetObjects: ALP_Object_Selection

AL_GetSort

AL_GetAreaTextProperty: ALP_Area_SortList
AL_GetObjects: ALP_Object_SortList

AL_GetSortedCols

AL_GetAreaTextProperty: ALP_Area_SortList
AL_GetObjects: ALP_Object_SortList

AL_GetSortEditorParams

Unsupported

AL_GetStyle

AL_GetColumnTextProperty: ALP_Column_FontName
AL_GetColumnRealProperty: ALP_Column_Size
AL_GetColumnLongProperty: ALP_Column_StyleF

AL_GetVersion

AL_GetAreaTextProperty: ALP_Area_Version

AL_GetWidths

AL_GetColumnRealProperty: ALP_Column_Width/ALP_Column_WidthUser

AL_GotoCell

AL_SetArealongProperty: ALP_Area_EntryGotoColumn, ALP_Area_EntryGotoRow

AL_InsArraysNam

AL_AddColumn using pointer

AL_InsertArrays

Obsolete - replace with AL_AddColumn

AL_InsertFields

Obsolete - replace with AL_AddColumn using pointer

AL_IsValidArea

AL_GetArealLongProperty: ALP_Area_IsArea

AL_Register

AL_Register. Note that in AreaList Pro v9 this function returns 0 for OK and an integer between 1 and 8
if not OK

There is a list of the error codes and their meanings here

AL_RemoveArrays

AL_RemoveColumn. Note that this will only remove one column at a time; supply -2 as the column
number to remove all columns in the area

AL_RemoveFields

AL_RemoveColumn. Note that this will only remove one column at a time; supply -2 as the column
number to remove all columns in the area

AL_RestoreData

AL_Load (in XML format)

AL_SaveData

AL_Save (in XML format)

AL_SetAltRowClIr

AL_SetArealongProperty: ALP_Area_AltRowOptions,
ALP_Area_AltRowColor * Using any color format, see Working with Colors

AL_SetAltRowColor

AL_SetAreal ongProperty: ALP_Area_AIltRowOptions,
ALP_Area_AltRowColor * Using any color format, see Working with Colors

AL_SetAreaBLOB

AL_SetAreaPtrProperty: ALP_Column_UserBLOB

AL_SetAreaName

AL_SetAreaTextProperty: ALP_Area_Name

AL_SetArrays

Obsolete

AL_SetArraysNam

AL_SetObjects: ALP_Object_Columns using array of pointers

AL_SetBackCir

AL_SetColumnLongProperty: ALP_Column_BackColor, ALP_Column_FtrBackColor
* Using any color format, see Working with Colors

AL_SetBackColor

AL_SetColumnLongProperty: ALP_Column_BackColor, ALP_Column_FtrBackColor
* Using any color format, see Working with Colors

AL_SetBackRGBColor

AL_SetColumnLongProperty: ALP_Column_BackColor, ALP_Column_FtrBackColor
* Using any color format, see Working with Colors

Mapping Old Commands to the ArealList Pro v9 API

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 257

AL_SetCalcCall

AL_SetColumnTextProperty: ALP_Column_Callback

AL_SetCallbacks

AL_SetAreaTextProperty: ALP_Area_CallbackMethEntryStart, ALP_Area_CallbackMethEntryEnd

AL_SetCellBorder

AL_SetCellLongProperty: ALP_Cell_Clear, ALP_Cell_XXXBorderOffset,
ALP_Cell_XXXBorderWidth, ALP_Cell_XXXBorderColor with XXX being Top, Left, Bottom, Right
* Using any color format, see Working with Colors

AL_SetCellColor

AL_SetCellLongProperty: ALP_Cell_Clear, ALP_Cell_ClearStyle,
ALP_Cell_TextColor, ALP_Cell_BackColor
* Using any color format, see Working with Colors

AL_SetCellEnter

AL_SetCellLongProperty: ALP_Cell_Clear, ALP_Cell_Enterable

AL_SetCellFrame

No equivalent in the new API

AL_SetCellHigh

AL_SetAreaTextProperty or AL_SetAreaPtrProperty:
ALP_Area_EntryHighlight, ALP_Area_EntryHighlightS, ALP_Area_EntryHighlightE

AL_SetCelllcon

AL_Setlcon + AL_SetCellLongProperty: ALP_Cell_LeftlconID, ALP_Cell_RightlconID to set the icon ID

» Using ALP_Cell_LeftlconFlags and ALP_Cell_RightlconFlags, to set a combined bitfield of horizontal
position, vertical position and scaling

AL_SetCellOpts

AL_SetArealongProperty: ALP_Area_SelType, ALP_Area_MoveCellOptions
cellMemOptimization is no longer supported

AL_SetCellRGBColor

AL_SetCellLongProperty: ALP_Cell_Clear, ALP_Cell_ClearStyle,
ALP_Cell_TextColor, ALP_Cell_BackColor
* Using any color format, see Working with Colors

AL_SetCellSel

AL_SetObjects: ALP_Object_Selection

AL_SetCellStyle

AL_SetCellLongProperty: ALP_Cell_Clear, ALP_Cell_ClearStyle, ALP_Cell_StyleF
AL_SetCellTextProperty: ALP_Cell_FontName

AL_SetCellValue

AL_SetCellTextProperty: ALP_Cell_FormattedValue/ALP_Cell_Value
AL_SetCellPtrProperty: ALP_Cell_Value

AL_SetColLock

AL_SetAreaPtrProperty: ALP_Area_ColsLocked

AL_SetColOpts

AL_SetArealongProperty: ALP_Area_ColumnResize, ALP_Area_ResizeDuring,
ALP_Area_ColumnLock, ALP_Area_ShowWidths, ALP_Area_DragColumn,
ALP_Area_DragAcceptColumn

AL_SetColumnLongProperty: ALP_Column_Visible for column hiding

AL_SetCopyOpts

AL_SetArealongProperty: ALP_Area_CopyHiddenCols
AL_SetAreaTextProperty: ALP_Area_CopyFieldSep, ALP_Area_CopyRecordSep,
ALP_Area_CopyFieldWrapper

Note: the v9 API uses Text, not single character

AL_SetDefaultFormat

AL_SetAreaTextProperty: ALP_Area_DefFmtinteger, ALP_Area_DefFmtLong, ALP_Area_DefFmtReal,
ALP_Area_DefFmtBoolean, ALP_Area_DefFmtDate, ALP_Area_DefFmtPicture

AL_SetDefaultStyle

AL_SetColumnTextProperty: ALP_Column_FontName, ALP_Column_Size, ALP_Column_HdrFontName,
ALP_Column_FtrFontName

AL_SetColumnLongProperty: ALP_Column_StyleF, ALP_Column_HdrStyleF, ALP_Column_FtrStyleF
AL_SetColumnRealProperty: ALP_Column_HdrSize, ALP_Column_FtrSize

AL_SetDividers

AL_SetAreal ongProperty: ALP_Area_ShowColDividers, ALP_Area_ColDivColor,
ALP_Area ShowRowDividers, ALP_Area_RowDivColor,
* Using any color format, see Working with Colors

AL_SetDrgDst

AL_SetAreaTextProperty: ALP_Area_DragDstRowCodes, ALP_Area_DragDstColCodes,
ALP_Area_DragDstCellCodes

AL_SetDrgOpts

AL_SetArealongProperty: ALP_Area_DragOptionKey, ALP_Area_DragRowMultiple,
ALP_Area_DragRowOnto, ALP_Area_DragScroll

AL_SetDrgSrc

AL_SetAreaTextProperty: ALP_Area DragSrcRowCodes, ALP_Area DragSrcColCodes,
ALP_Area_DragSrcCellCodes

Mapping Old Commands to the ArealList Pro v9 API

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 258

AL_SetDropDst

AL_SetAreaTextProperty: ALP_Drop_DragDstCodes

AL_SetDropDst

AL_SetAreaTextProperty: ALP_Drop_DragDstCodes
* Instead of x arguments, join them using ‘|’
AL_SetObjects: ALP_Object_DragDstRowCodes using array

AL_SetDropOpts

AL_SetAreal ongProperty: ALP_Drop_DragAcceptLine, ALP_Drop_DragAcceptColumn

AL_SetEditedText

AL_SetAreaTextProperty: ALP_Area_EntryText/ ALP_Area_EntrySelectedText

AL_SetEditMenuCallback

AL_SetAreaTextProperty: ALP_Area_CallbackMethMenu

AL_SetEnterable

AL_SetColumnLongProperty: ALP_Column_Enterable

AL_SetColumnPtrProperty or AL_SetColumnTextProperty: ALP_Column_PopupArray
AL_SetColumnTextProperty: ALP_Column_PopupMenu

* Menu is 4D’s menu

AL_SetEntryCtls

AL_SetColumnLongProperty: ALP_Column_EntryControl

AL_SetEntryOpts

AL_SetAreal ongProperty: ALP_Area_lgnoreSoftDeselect, ALP_Area_EntryClick, ALP_Area_SelClick
(defaults to 3 instead of 2 when legacy AL_SetEntryOpts is called), ALP_Area_EntryAllowReturn,
ALP_Area_EntryAllowSeconds,

ALP_Area_EntryMapEnter, decimalChar, useNewPopuplcon are no longer supported (decimalChar on
Windows is handled automatically; new popup icon is always used)

AL_SetEventCallback

AL_SetAreaTextProperty: ALP_Area_CallbackMethOnEvent

AL_SetFields

AL_SetObjects: ALP_Object_Columns using array of pointers

AL_SetFile

AL_SetAreal ongProperty: ALP_Area_TablelD

AL_SetFilter

AL_SetColumnTextProperty: ALP_Column_Filter

AL_SetFooters

AL_SetColumnTextProperty: ALP_Column_FooterText

AL_SetForeCir

AL_SetColumnLongProperty: ALP_Column_TextColor, ALP_Column_HdrTextColor,
ALP_Column_FtrTextColor
* Using any color format, see Working with Colors

AL_SetForeColor

AL_SetColumnLongProperty: ALP_Column_TextColor, ALP_Column_HdrTextColor,
ALP_Column_FtrTextColor
* Using any color format, see Working with Colors

AL_SetForeRGBColor

AL_SetColumnLongProperty: ALP_Column_TextColor, ALP_Column_HdrTextColor,
ALP_Column_FtrTextColor
* Using any color format, see Working with Colors

AL_SetFormat

AL_SetColumnLongProperty: ALP_Column_Format, ALP_Column_HorAlign, ALP_Column_HdrHorAlign,
ALP_Column_FtrHorAlign, ALP_Column_CalcHeight

AL_SetFtrStyle

AL_SetColumnTextProperty: ALP_Column_FtrFontName
AL_SetColumnLongProperty: ALP_Column_FtrStyleF
AL_SetColumnRealProperty: ALP_Column_FtrSize,

AL_SetHdrStyle

AL_SetColumnTextProperty: ALP_Column_HdrFontName
AL_SetColumnRealProperty: ALP_Column_HdrSize
AL_SetColumnLongProperty: ALP_Column_HdrStyleF

AL_SetHeaderlcon

Unsupported

AL_SetHeaderOptions

Unsupported

AL_SetHeaders

AL_SetColumnTextProperty: ALP_Column_HeaderText

AL_SetHeight

AL_SetAreal ongProperty: ALP_Area_NumHdrLines, ALP_Area_NumRowLines,
ALP_Area_ NumFtrLines, instead of Pad use Indent
(ALP_Area_Hdrindent, ALP_Area_Rowlndent, ALP_Area_Ftrindent)

Mapping Old Commands to the ArealList Pro v9 API

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 259

AL_Setinterface

AL_SetArealongProperty: ALP_Area_UseEllipsis, ALP_Area_lgnoreMenuMeta,
ALP_Area_ClickDelay. ALP_Area_UseDateControls, ALP_Area_UseTimeControls.

Appearance is always native (headers, scrollbars, highlight color, checkboxes and entry widget, except
when in compatibility mode and Win7 - headers are from Vista), only headers can be drawn the legacy v8.x
way using the ALP_Area_HeaderMode property; allowPartialRow is always used; useOldDatePopup is
ignored (new form is used)

AL_SetLine

AL_SetArealongProperty: ALP_Area_SelRow

AL_SetMainCalls

AL_SetAreaTextProperty: ALP_Area_CallbackMethSelect,
ALP_Area_CallbackMethDeselect

AL_SetMinRowHeight

AL_SetAreaRealProperty: ALP_Area_MinRowHeight, ALP_Area_MinHdrHeight

AL_SetMiscColor

AL_SetArealongProperty:

ALP_Area_MiscColor1 is included for compatibilty but it is ignored because it refer to properties that, in
previous versions, customised the look of the area.

In Version 9 only the native look for each platform is supported, so this option is irrelevant.

For the same reason, ALP_Area_MiscColor2 has been modified. In AreaList Pro v9, this color is used as
the background color: before drawing anything, the whole ArealList Pro area is erased using this color

ALP_Area_MiscColor3, ALP_Area_MiscColor4
* Using any color format, see Working with Colors
areaAboveVertScroll - not implemented; header is drawn

areaBelowVertScroll - not implemented; scrollbar is drawn;
Used as background color = this color is used to erase the area

arealLeftOfHorzScroll - light gray = area left from horizontal scrollbar under locked columns
areaRightOfHorzScroll - light gray = rectangle right to horizontal scrollbar and below vertical scrollbar

AL_SetMiscOpts

AL_SetArealongProperty: ALP_Area_ HideHeaders, ALP_Area_ShowFocus, ALP_Area_ShowFooters
postKey and useModernLook are unsupported

AL_SetMiscRGBColor

AL_SetAreal ongProperty: ALP_Area_MiscColor1, ALP_Area_MiscColor2, ALP_Area_MiscColor3,
ALP_Area_MiscColor4 « Using any color format, see Working with Colors

AL_SetPictEscape

Unsupported

AL_SetRGBDividers

AL_SetArealongProperty: ALP_Area_ShowColDividers, ALP_Area_ColDivColor,
ALP_Area_ShowRowDividers, ALP_Area_RowDivColor,
Using any color format, see Working with Colors

AL_SetRowColor

AL_SetRowLongProperty: ALP_Row_Clear, ALP_Row_ClearStyle ALP_Row_TextColor,
ALP_Row_BackColor « Using any color format, see Working with Colors

AL_SetRowOpts

AL_SetArealongProperty: ALP_Area_SelMultiple, ALP_Area_SelNone, ALP_Area_DragLine,
ALP_Area_DragAcceptLine, ALP_Area_MoveRowOptions, ALP_Area_SelNoHighlight

AL_SetRowRGBColor

AL_SetRowLongProperty: ALP_Row_Clear, ALP_Row_ClearStyle ALP_Row_TextColor
ALP_Row_BackColor « Using any color format, see Working with Colors

AL_SetRowStyle

AL_SetRowLongProperty: ALP_Row_Clear, ALP_Row_ClearStyle
AL_SetRowTextProperty: ALP_Row_FontName

AL_SetRowlongProperty: ALP_Row_StyleF

AL_SetScroll

AL_SetArealongProperty: ALP_Area_Visible, ALP_Area_ShowVScroll, ALP_Area_ShowHScroll
AL_SetAreaRealProperty: ALP_Area_ScrollLeft, ALP_Area_ScrollTop
AL_SetRowlLongProperty: ALP_Row_Reveal

AL_SetSelect

AL_SetObjects: ALP_Object_Selection

AL_SetSort

AL_SetAreaTextProperty: ALP_Area_SortList/ALP_Area_SortListNS
AL_SetObjects: ALP_Object_SortList/ALP_Object_SortListNS

AL_SetSortedCols

AL_SetAreaPtrProperty: ALP_Area_SortListNS
AL_SetObjects: ALP_Object_SortList/ALP_Object_SortListNS

Mapping Old Commands to the ArealList Pro v9 API

Old commands

Q

Mapping Old Commands to the AreaList Pro v9 API|

New Commands and Properties

| 260

AL_SetSortEditorParams

Use the ALP_Area_SortTitle property in the ArealList Pro Area theme to set the sort editor title and
ALP_Area_SortPrompt to set the prompt
The other options are not supported

AL_SetSortOpts

AL_SetArealongProperty: ALP_Area_SortDuring, ALP_Area_UserSort, ALP_Area_AllowSortEditor
AL_SetAreaTextProperty: ALP_Area_SortPrompt

AL_SetSpellCheck

Not supported

AL_SetStyle

AL_SetColumnTextProperty: ALP_Column_FontName
AL_SetColumnRealProperty: ALP_Column_Size

AL_SetColumnLongProperty: ALP_Column_StyleF

AL_SetSubSelect

Obsolete

AL_SetWidths

AL_SetColumnRealProperty: ALP_Column_Width, ALP_Column_WidthUser

AL_SetWinLimits

Obsolete

AL_ShowSortEd

AL_SetAreal ongProperty: ALP_Area_ShowSortEditor

AL_SkipCell

AL_SetArealongProperty: ALP_Area_EntrySkip

AL_UpdateArrays

(1): AL_SetArealongProperty: ALP_Area_ClearCache with value -2
(2): AL_SetArealongProperty: ALP_Area_UpdateData with value 0

AL_UpdateFields

(1): AL_SetArealongProperty: ALP_Area_ClearCache with value -2
(2): AL_SetArealongProperty: ALP_Area_UpdateData with value 0

Mapping Old Commands to the ArealList Pro v9 API

@ .

DisplayList

DisplayList

About DisplayList

DisplayList is a kind of mini-AreaList Pro, without any need to use a layout and a plug-in area.
It's an easy-to-use tool to implement scrolling lists for user interaction.

It is now fully included with AreaList Pro and backwards compatible (except the items listed below). We have included a command
list for reference purposes.

See also Entering data in Areal.ist Pro with DisplayList.

Incompatibilities

Patterns are no longer supported. They are interpreted by ArealList Pro version 9 as transparency ratios.
See Patterns.
The font styles Outline, Shadow, Extended, and Condensed are no longer supported.

ArraySort. This was a substitute for MULTI SORT ARRAY, before this call was introduced to 4D. It must be replaced with MULTI
SORT ARRAY.

About DisplayList — Incompatibilities

DisplayList Commands

@ |262

DisplayList

DisplayList

(array1;...arrayN) = SelectedLine

Parameter Type Description
= array1...N array array
+ selectedLine Integer Line selected by user:

-1: another DisplayList window is currently displayed in another process
0: user clicked cancel button, or no elements were selected
>0: line number selected by user

DisplayList displays the arrays in the DisplayList window.

Any formatting commands must be executed prior to DisplayList.

SetListHeaders
(header1;...headerN)
Parameter Type Description
= header1...N string Header text to display in each column

SetListHeaders is used to specify the value to display in the header for each column.

Itis executed prior to DisplayList, and the parameters for the two commands correspond (i.e., the first parameter for SetListHeaders

sets the header for the first parameter, or first column, of DisplayList).

DisplayList Commands

@ |263

DisplayList

SetListButtons

(OKtext;cancelText;promptText;button3Text;button3Cmd;button4 Text;button4Cmd;button5Text;button5Cmd;

button6Text;button6Cmd)

Parameter Type Description

OKText string value to display in OK button
cancelText string value to display in Cancel button
promptText string value to display in upper left of the DisplayList window
button3Text string value to display in the third button
button3Cmd string cmd key equivalent for the third button
button4Text string value to display in the fourth button
button4Cmd string cmd key equivalent for the fourth button
button5Text string value to display in the fifth button
button5Cmd string cmd key equivalent for the fifth button
button6Text string value to display in the sixth button
button6Cmd string cmd key equivalent for the sixth button

SetListButtons is used to specify the values to display in the buttons, and the Prompt message in the upper left of the DisplayList
window. The button widths will automatically be adjusted so that the values will fit. If the values can’t be displayed in the size

window, then the ends of the button values will be truncated.

SetListSize

(windowHeight;windowWidth;location)

Parameter Type Description

= windowHeight Integer Height of DisplayList window
= windowWidth Integer Width of DisplayList window

= location Integer Index value for window location

SetListSize is used to control the size or location of the window.

The possible values for Location are:

Value Window location

Centered on screen (default)

Centered in top 4D window

At top left of screen

W N = O

At mouse position

DisplayList will not allow a window to be displayed larger than the screen being used. If the parameters passed will result in a

window larger than the screen, then the window will be displayed at the maximum possible size to fit on the screen.

If SetListSize is not called, the default size is based on arrays content/columns width and buttons and can grow to full (main) screen.

Pass a zero (0) for either window size parameter to force auto-sizing for that dimension.

Value 3 (at mouse position) may be useful when DisplayList is used for “popup” entry in AreaList Pro.

DisplayList Commands

Q

| 264

DisplayList
SetListWidths
(column1;...columnN)
Parameter Type Description
= column1...N Integer Width for each displayed column
SetListWidths is used to set the point width for one or more columns.
Each passed parameter corresponds to the array passed in the DisplayList command.
SetListFormats
(columnNumber; format)
Parameter Type Description
= columnNumber Integer Column to format
= format string Format to apply to data displayed in ColumnNumber
The display format for the contents of a column is set with SetListFormats.
Any 4D-supported format for number, boolean, date, time (ARRAY LONGINT) and string arrays may be used.
Developer-created styles defined in the Design Environment may also be used.
Be sure to use a string as the second parameter!
SetListHdrStyle
(fontName;size;styleNumber)
Parameter Type Description
—= fontName string Name of font. If not called, or the specified FontName is not found, the headers will be
displayed in Geneva 12 point Plain
= size integer Size of font
= styleNumber integer Number for style to apply to font. A Macintosh font style code. By adding the codes together,

you can combine styles

SetListHdrStyle is used to format the DisplayList column headers.

The numeric codes for StyleNumber are shown below:

Style Number
Plain 0
Bold 1
Italic 2
Underline 4

DisplayList Commands

@ |265

DisplayList
SetListStyle
(fontName;size;styleNumber)
Parameter Type Description
— fontName string Name of font. If not called, or the specified FontName is not found, the headers will be
displayed in Geneva 12 point Plain
= size integer Size of font
= styleNumber integer Number for style to apply to font. A Macintosh font style code. By adding the codes together,

you can combine styles

SetListStyle is used to format the DisplayList arrays, or list.

The numeric codes for StyleNumber are shown below:

Style Number

Plain
Bold

Italic

AN =~ O

Underline

SetListBehavior

(multiLines;allowColumnResize;sortColumn;preSort;userSort;displayPointWidth;hideLastColumn;swapCancelOK)

Parameter Type Description

= multiLines integer Single or multiple-line selection:
1 - allow user to command-click, shift-click, or drag to select multiple lines
0 - allow only one line to be selected (default)

= allowColumnResize integer User-resizable columns:
1 - allow user to resize columns (default)
0 - prevent user from resizing columns

= sortColumn integer column for presort

- preSort integer presort off, ascending or descending

- userSort integer allow user to sort

= displayPointWidth integer display column widths

= hideLastColumn integer don’t display last array passed to DisplayList

— swapCancelOK integer OK and Cancel buttons are swapped when they are visible

SetListBehavior is used to control several DisplayList options.

Each parameter is an integer.

DisplayList Commands

Q

DisplayList

| 266

SetListColor

(foreColor1;foreColor2;backColor1;backColor2)

Parameter Type Description

- foreColor1 string Foreground color from DisplayList's palette
- foreColor2 integer Foreground color from 4D’s palette

= backColor1 string Background color from DisplayList's palette
— backColor2 integer Background color from 4D’s palette

SetListColor is used to set the foreground and background colors of the list area.
DisplayList has its own palette.

It contains the following colors:

White Green
Black Blue
Magenta Yellow
Red Gray
Cyan Light Gray

DisplayList Commands

@ |267

DisplayList

SetListHdrColor

(foreColor1;foreColor2;backColor1;backColor2)

Parameter Type Description

- foreColor1 string Foreground color from DisplayList's palette
- foreColor2 integer Foreground color from 4D’s palette

= backColor1 string Background color from DisplayList's palette
— backColor2 integer Background color from 4D’s palette

SetListHdrColor is used to set the colors for the header area.

SetListDividers

(colDividerPattern;colDividerColor1;colDividerColor2;rowDividerPattern;rowDividerColor1;rowDividerColor2)

Parameter Type Description

= colDividerPattern string pattern of the column divider

— colDividerColor1 string color from DisplayList's palette for the column divider

- colDividerColor2 integer color from 4D’s palette for the column divider

= rowDividerPattern string pattern of the row divider

- rowDividerColor1 string color from DisplayList's palette for the row divider

— rowDividerColor2 integer color from 4D’s palette for the row divider

SetListDividers is used to set the pattern and the color of the column and row dividers.

Patterns are no longer supported. They are interpreted by ArealList Pro version 9 as transparency ratios.
See Patterns.

SetListLine

(line number)

Parameter Type Description

= line number integer line number to select (highlight)

SetListLine sets the line to be highlighted.

The list will automatically scroll to display the selected line at the top of the list, if possible.

DisplayList Commands

@ |268

DisplayList

SetListSelect

(array)
Parameter Type Description
= array integer array contains element numbers to select (highlight)

SetListSelect sets the lines to be highlighted.
The list will be automatically scrolled to display the first selected line at the top of the list, if possible.

If this command is not used, then DisplayList will display the arrays with the first line selected. SetListSelect can only be used in
multiline mode. If DisplayList is in single-line mode, you must use SetListLine.

GetListButton

- buttonHit
Parameter Type Description
= buttonHit integer integer button that the user selected

GetListButton is used to get the button that the user selected.

ButtonHit — The possible values are:

Value Button Selected
OKButton
CancelButton
Button3
Button4
Button5
Button6

o gl WIN -

GetListWidths

(column1;...columnN)

Parameter Type Description

= column1...N integer width for each column

GetListWidths is used to get the widths of the columns after DisplayList has been displayed, to allow any user changes to the
column widths to be saved for future use.

Variables must be used as the passed parameters; this function will not work with fields. GetListWidths must be executed after
DisplayList.

DisplayList Commands

@ |269

DisplayList

GetListSelect

(array) = result code

Parameter Type Description
- array array list of selected lines
© result code longint indicates if enough memory was available

GetListSelect is used to determine which items were selected by the user when the Multi-line option is enabled using
SetListBehavior, and they have selected multiple lines.

Each element of the array contains a line number that the user selected when the list was displayed. The array must be an integer
or longint array.

For compatibility purposes, the result is 1 if everything was OK.

SetListDone

SetListDone is used to inform DisplayList that you are done using it in the current 4D process.

Use SetListDone when you are done with all of the DisplayList commands in a 4D process, to free up the memory used by
DisplayList for that process.

Normally you will call this routine at the end of a process.

DisplayList Commands

@ ..

DisplayList

Troubleshooting

This section lists several common problems, and their solutions, encountered when working with DisplayList.
When troubleshooting a problem, use all of the tools at your disposal, including the 4D debug window.

Many problems can be quickly resolved by stepping through each line of code, and checking the values of variables and arrays.

Why are one or more of my columns missing?

Ensure that all arrays are of the same size.
DisplayList will use the largest array’s size, and not display any arrays of non-conforming size.

Also remember that two-dimensional arrays should not be used.

Why doesn’t the command key equivalent work for a button?

Make sure you passed a button text for the button. Also make sure none of the preceding buttons have the same command key.

Troubleshooting

Q

Printing with SuperReport Pro

Printing with
SuperReport Pro

SuperReport Pro is 4D’s powerful printing companion. It can also be used in conjunction with AreaList Pro version 9.4 and above
to print AreaList Pro areas. This feature requires SuperReport Pro version 3 or above.

How it works

ArealList Pro allows printing or saving as HTML through SuperReport Pro v3. It only takes two lines of code to print an AreaList Pro
area.

Additional options are available, such as automatic column width and use of SuperReport Pro style properties instead of the existing
Arealist Pro area settings.

Arealist Pro v9.7 and above can print the area footers using SuperReport Pro 3.1.2 or higher.
You can either use the built-in SuperReport Pro template to print an AreaList Pro area “on the fly” or create your own.

The AreaList Pro Demonstration database includes a “Print with SuperReport Pro” button in the AreaList > Configuration Options...”
dialog. It also includes a SuperReport menu, allowing printing with the default template or a custom template, and editing / creating
your own templates.

How it works

| 271

http://www.e-node.net/srp

Q

Printing with SuperReport Pro

Command and property

Use the following command to print with SuperReport Pro:

| 272

AL_SuperReport

(areaRef:L; template:T; options:L; styleOptions:L; title:T) = result:T

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout.

- template text XML SuperReport template or full path to a XML template or empty to use ArealList Pro’s
built-in template.

= options longint 0 = use current columns widths; 1 = use automatic width.

— styleOptions longint Style properties that should not be overtaken by AreaList Pro - see constants in
SuperReport Pro manual, Style Features.

= title text Optional text centered in the header.

+~ result text SuperReport Pro report XML

Use the following property with AL_GetAreaTextProperty to retrieve the default template in XML format:

Constant Get Set Per Type Default Min Max Comments

ALP_Area_SRPTableTemplate v text Get the SuperReport Pro template used for
report creation (stored in Resources/Table

Report.xml) as XML

Creating the report

Creating a XML SuperReport Pro report from an Arealist Pro area is performed by the AL_SuperReport command:
AL_SuperReport (AreaRef:L; Template:T; Options:L; StyleOptions:L; Title:T) -> result:T

= Template can be a XML template or full path to a XML template or empty to use ArealList Pro’s built-in SuperReport Pro template

= Options:
0: use the current column width (SuperReport Pro Table column’s width set to ALP_Object_ColumnWidth)

Note: the current column width (ALP_Object ColumnWidth) is used, not the width set by developer, or by the user resizing
columns (ALP_Object_ColumnWidthUser).

Note: ALP_Object_ColumnWidth can be smaller than ALP_Object ColumnWidthUser when
ALP_Area_ScrollColumns = 1 or smaller/bigger when ALP_Area AutoResizeColumn # 0.

1: use automatic width (SuperReport Pro Table column’s width set to zero)

m StyleOptions: bit-field - which style properties should not be overtaken from ArealList Pro
m see constants in SuperReport Pro Style Features (SuperReport Pro v3 manual)

m Title: optional text centered in the header

How it works

http://www.e-node.net/ftp/SuperReportPro/SuperReportPro_Developer_Manual.pdf

Q ..

Printing with SuperReport Pro

If you want to use your own SuperReport Pro template:

m Title will replace any text in all text objects named “Title” in the first header (must not be grouped - only direct children of the
header)

m in the body section, the first table object will be filled with headers/columns; the table must have exactly one column (used as
the template for all printed columns)

Arealist Pro area's alternate row coloring settings are honored in the SuperReport Pro report.

Example
$SreportXml:=AL_SuperReport ($area;"";1;SRP_Style HasFontName | SRP_Style HasFontSize;
“My first ALP area printed using SRP”)

The code above means: fill the template but don’t use the font name and font size defined in ArealList Pro (use the one stored in
the template default style), columns will be auto-sized by SuperReport Pro (because the fonts are different, the AreaList Pro widths
must be ignored)

Then use SuperReport Pro to edit the resulting report, save it, export it as HTML or print it, e.g.:
$result:=SR_Print ($reportXml;0;SRP_Print_DestinationPreview | SRP_Print_AskPageSetup; "";0;"";0)

Custom templates
Arealist Pro’s built-in SuperReport Pro template is obtained by the ALP_Area SRPTableTemplate property, which gets the
SuperReport Pro template that will be used for report creation by AL_SuperReport (stored in Resources/TableReport.xml) as XML:
$tableReportTemplate:=AL_GetAreaTextProperty (0;ALP_Area_SRPTableTemplate)
I/l get the built-in SRP template from ALP

Then in SuperReport Pro you can edit and save your own template anywhere (in the data file or a document) for future use with
AL_SuperReport, e.g.:

$srpError:=SR_LoadReport ($window;$tableReportTemplate;0)
/lload the SRP report and display it, save the custom template somewhere with the File menu

How it works

Q

Printing with SuperReport Pro

Demonstration databhase code examples

Print with SuperReport Pro (default template)
C_TEXT($reportXml)
C_LONGINT($result)
$reportXml:=AL_SuperReport (cArea;"";0;0;vTitle)
$result:=SR_Print ($reportXml;0;SRP_Print_DestinationPreview | SRP_Print_AskPageSetup;"";0;"";0)

Print with SuperReport Pro (custom template)
C_TEXT($reportXml ;$path)
C_LONGINT($result)
$path:=Select document("";".xml;xml";"Select a SRP template for ALP";0)
$path:=Document //we actually need the full path
If ($path#"™)
$reportXml:=AL_SuperReport (cArea;$path;0;0;vTitle)
$Sresult:=SR_Print ($reportXml;0;SRP_Print_DestinationPreview | SRP_Print_AskPageSetup;™;0;"";0)
End if

Editing a custom template
C_TEXT($tableReportTemplate)
C_LONGINT($srpError)
C_LONGINT($window)

$tableReportTemplate:=AL_GetAreaTextProperty (0;ALP_Area_SRPTableTemplate)
/I get the built-in SRP template from ALP

If ($tableReportTemplate#")

$window:=Open external window(100;100;800;800;Plain form window;

“SuperReport Pro template for AreaList Pro";"%SuperReport") //open the window for editing
$srpError:=SR_LoadReport ($window;$tableReportTemplate;0)
/lload the SRP report and display it, save the custom template somewhere with the File menu

End if //closing the window will prompt for save if modified

| 274

Demonstration database code examples

@ ..

Cache Management

Cache Management

Understanding how the internal AreaList Pro cache works, and how to manage it depending on the area changes performed by the
user or programmatically can help optimize your code and know when to refresh displayed data.

Data updating, Data checking and Cache clearing

Three properties

Calling:
AL_SetArealLongProperty ($area; ALP_Area_UpdateData; 0)

is the same as calling:
AL_SetArealLongProperty ($area; ALP_Area ClearCache; -2)
AL_SetArealongProperty ($area; ALP_Area_CheckData; 0)

Examples

After a single row was modified in arrays/selection (refresh only this row):
AL_SetArealLongProperty ($area ; ALP_Area_ClearCache; $rownum)

After several rows were modified (e.g. sorted):
AL_SetArealLongProperty ($areca ; ALP_Area_ClearCache; -2)

or you might call (but it is really different in the amount of work done, depending on settings):
AL_SetArealongProperty ($area ; ALP_Area UpdateData; 0)

After resizing arrays/selection without modifying the data (e.g. adding/removing a row at the end):
AL_SetArealLongProperty ($area ; ALP_Area_CheckData; 0)

After resizing arrays/selection and the data was modified (e.g. showing a new selection):
AL_SetArealLongProperty ($area ; ALP_Area_UpdateData; 0)

Upgrading from previous API

To map the ArealList Pro v8.x AL_UpdateArrays/AL_UpdateFields commands:
1 — AL_SetArealLongProperty ($area ; ALP_Area ClearCache; -2)

2 — AL_SetArealongProperty ($area ; ALP_Area_UpdateData; 0)

Data updating, Data checking and Cache clearing

@

Cache Management

ArealList Pro version 8 refresh commands
vs version 9 cache management

Version 8: no data caching, fields/arrays are accessed during the update event to get values to draw.
Version 9: displayed data are fully cached, no access to fields/arrays on update if not needed.

The ALP_Area_ClearCache property with value -2 is similar to v8.x AL_UpdateArrays (-1): the cache is cleared, new data are
fetched, data sorted if ALP_Area_SortDuring is set to true (1).

The size of the arrays/selection should not change, however AreaList Pro should survive if it is modified.

Using ALP_Area_UpdateData is similar to AL_UpdateArrays (-2): the cache is cleared, data are sorted, width of columns is
computed...

Using ALP_Area_CheckData is something between the two above: the cache is not cleared, the size of arrays/selection is checked,
no sort is performed, column widths are calculated.

When Arealist Pro has to display data and they are not in the cache, they are fetched from arrays/fields. Only visible rows are
fetched. Then the area is drawn.

So once an area was displayed (or the cache was filled because it was required by a call), AreaList Pro will not access 4D during
the update event.

Cache clearing or Data updating

You may wonder whether “clear cache” means that we are syncing the plugin to the underlying 4D data (arrays/fields) or that we
are clearing Arealist Pro’s cache (thereby leaving everything blank).

Cache clearing means that the internal cache is cleared.

ALP_Area_ClearCache does just that: all data to be displayed are re-fetched from 4D.

ALP_Area_UpdateData does much much more: sort selection/arrays, compute column widths, etc. then fill the cache.

Syncing is performed on demand, as described above: during an update event or during a call when it is required (like ALP_Row_Reveal)
or explicitly (e.g. using ALP_Area_FillCache).

When ALP_Area UpdateData, ALP_Area CheckData or ALP_Area_FillCache is used, the cache is filled with the data.

The optional parameter is the number of rows to fetch. If not specified (< 1), the number of visible rows (as calculated for fixed row
height) is used.

Unnecessary updates

There is no need to call AL_SetAreaLongProperty ($elList; ALP_Area_UpdateData;0) in the On Load event when configuring the area.

If the data is already in the cache, it will be unnecessarily processed again: fetching data, sorting, measuring... For example, with
a large selection this means that the selection will be sorted again. However, besides this unneeded re-processing, it should not
harm.

Also, when editing an enterable cell, you don’t have to clear the cache if you don’t modify other rows. You can safely modify the
currently edited row (the whole row is re-fetched automatically).

Arealist Pro version 8 refresh commands vs version 9 cache management — Cache clearing or Data updating — Unnecessary updates

| 276

Q ..

Appendix | - Codes

Appendix | Codes

Arealist Pro Error Codes

Result Godes

All function calls return a longint result code, with 0 meaning that the function executed successfully. All other possible error codes
are listed below along with their constants:

Error Number Constant Description

-1 ALP_Err_Generic General error, often returned by submodules (like XML parser).

0 ALP_Err_OK No error: the function call was successful.

1 ALP_Err_CantLoadXML The XML variable could not be loaded

2 ALP_Err_CantSaveXML The XML variable could not be saved.

3 ALP_Err_InvalidAreaRef You have passed an invalid AreaList Pro area reference to the function.

4 ALP_Err_InvalidObjectRef Invalid object reference was passed to commands that require an object reference.
5 ALP_Err_InvalidRequest There are no objects of the requested type.

6 ALP_Err_InvalidArrayType The wrong type of array was passed.

7 ALP_Err_InvalidNilPointer An invalid pointer was passed - ie, it does not point to a valid object.

8 ALP_Err_InvalidPointerType ArealList Pro was not able to cast from the internal type to the types of variables

passed in pointer parameters. Any type can be cast to string; Booleans can be cast
to number variables.

9 ALP_Err_InvalidArraySize This error means that you have passed two or more arrays to the function, and they
do not all contain the same number of elements.

10 ALP_Err_CantLoadRecord When using ALP_Cell_Value (old AL_SetCellValue) to modify record (record is
locked).

11 ALP_Err_CantSaveRecord When using ALP_Cell_Value (old AL_SetCellValue) to modify record (SAVE

RECORD failed).

ArealList Pro Error Codes

@ |278

Appendix | - Codes

Error #-9939

The ArealList Pro plugin was not loaded correctly. Please refer to the installation instructions to make sure that you have installed
the plugin in the correct place.

ArealList Pro Event codes

The user’s last ArealList Pro-related action is stored in the ALP_Area_ALPEvent property. You can find out what it was by calling the
AL_GetArealLongProperty command - for example:

$event:= AL_GetAreaLongProperty ($area;ALP_Area AlpEvent)

$area can be null (all areas) for most properties.

Events can be captured in the ArealList Pro area’s object method or in the Event callback method, but some can only be captured
in the Event callback method.

With regards to the drag and drop events where either option is possible, the preferred method is to use the On Drop form event.

Specifically, AL Row drop event, AL Column drop event and AL Cell drop event are reported during On Drop.

Constant Value Ca;ﬁ;‘:k User action

AL Null event 0 No action

AL Single click event 1 Single-click (or up/down arrow keys)

AL Double click event 2 Double-click

AL Empty Area Single click 3 Single-click in an empty part of the area (without displayed data)

AL Empty Area Double click 4 Double-click in an empty part of the area (without displayed data)

AL Single Control Click 5 Control-click (or right mouse click)

AL Empty Area Control Click 6 cCj:ont)rol-click (or right mouse click) in an empty part of the area (without displayed

ata

AL Vertical Scroll Event 7 Vertical scroll

AL Row drop event 8 Row(s) dropped to the area

AL Column drop event 9 Column(s) dropped to the area

AL Cell drop event 10 Cell(s) dropped to the area

AL Allow drop event 1" v Allow or disallow drop (during drag and drop from an external object) - respond in
event callback with $0:=1 to allow drop or $0 = 0 to disallow

AL Hierarchy collapse event 12 A hierarchy level was collapsed

AL Hierarchy expand event 13 A hierarchy level was expanded

AL Object drop event 14 Something was dropped from a non-Arealist Pro object (such as a 4D list or
variable)

AL Typeahead event 15 Reported when typeahead occurs and ALP_Area_TypeAheadEffect is set to -2

AL Mouse moved event 18 4 Mouse moved (including over the “empty column” on the right)

AL Mouse entry unsel row event 101 Entry by mouse action in a previously unselected row

AL Sort button event -1 Sort button

AL Select all event -2 Edit menu Select All

AL Column resize event -3 Column resized

AL Column lock event -4 Column lock changed

AL Row drag event -5 Row(s) dragged from the area

Error #-9939 - ArealList Pro Event codes

@ |279

Appendix | - Codes

Constant Value Ca;lnbl';ck User action

AL Sort editor event -6 Sort editor

AL Column drag event -7 Column(s) dragged from the area

AL Cell drag event -8 Cell(s) dragged from the area

AL Object resize event -9 Object and window resized

AL Column click event -10 User clicked on column header, automatic sort won’t be executed
AL Column control click event -11 Control-click on column header

AL Footer click event -12 Click on column footer

Arealist Pro Text Style Tags

If the ALP_Column_Attributed option has been set, special tags can also be used in any text contained in an ArealList Pro area to
display styled characters.

Note: the tags described below are exacty the same as in SuperReport Pro.

These tags work just like HTML tags: <tag>styled text</tag>.

Style Tag

Bold

Italic <i>

Underline <u> or <ins>
Strike-through

Set font size to # points <s #>

Increase font size by # quarters (1/4) of current size <s +#>
Decrease font size by # quarters (1/4) of current size <s -#>

Set font by name <f "font name">

(needs to be quoted if the name contains more than one word)

Set color (any format can be used, e.g. <c 0xFFFF0000> <c 1.0,0,0> <c color name>
<c P123> <c dark orange>)

4D v12 (and above) internal format for styled text is stored as where the style attributes used by
Arealist Pro are:

m font-family

m font-size

m font-weight (bold/normal)

m font-style (italic/normal)

m text-decoration (underline/ line-through/none)
m color (#RRGGBB).

m background-color (#RRGGBB)

It is also possible to set the format as attributed, and specify the style attributes using the ALP_Column_Attributed and ALP_Column_
Format properties.

Arealist Pro Text Style Tags

http://www.e-node.net/srp

@ |280

Appendix | - Codes

Example for an integer column:
AL_SetColumnLongProperty ($area;$column;ALP_Column_Attributed;1) //the column is “attributed”

AL_SetColumnTextProperty ($area;$column;ALP_Column_Format;\
"<c blue>+## ##</c>;<i><c red>-## ###</c></i>;<s +1><c green>ZERO</c></s>")

With the above settings:
m Positive numbers will be displayed in blue roman characters with a plus sign.
m Negative numbers will be displayed in red italic characters with a minus sign.

m Zeros will be displayed in green bold, font size increased by 25%, with the text “ZERO”.

Here is the result:

-16 238
-5 526

-31 880
-21 940
+4 137
-100

+27 512
-9 330
+21 250
+707
+28 936
-30 953
-24 692
+24 109
-24 352

Note that if the number format is too “small” to hold the number, 4D (and ArealList Pro) will display it as “<<<<<<<<<<<<<<<<<<,
which will interfere with the opening tag character “<” if the column is attributed (multi-styled).

In the example above (using “## ###" as a number format), this will be the case for all numbers exceeding 99,999.

Make sure that the format used will not cause the number to overflow, lest unexpected results might ensue.

Note: the AL_GetPlainText command converts attributed text to plain text.

Arealist Pro Text Style Tags

@ |281

Appendix | - Codes

Property Values, Constants and XML Names

Property Constant Property Value (selector) Property XML Name
ALP_Area_AllowSortEditor soed allowEditor
ALP_Area_AlpEvent evtL

ALP_Area_AltRowColor altc altRowColor
ALP_Area_AItRowOptions alto altRowColorParams
ALP_Area_ArrowsForHierarchy arkh

ALP_Area_AutoResizeColumn SNAP autoResizeColumn
ALP_Area_AutoSnapLastColumn snap autoSnapLastCol
ALP_Area_BottomRow arbt

ALP_Area_CacheSize cacs cacheSize
ALP_Area_CalcAllRows VWAL

ALP_Area_CalendarColors caco

ALP_Area_CalendarLook calo

ALP_Area_CallbackMethDeselect apde deselectCallback
ALP_Area_CallbackMethEntryEnd apef endCallback
ALP_Area_CallbackMethEntryStart apes startCallBack
ALP_Area_CallbackMethMenu apme menuCallback
ALP_Area_CallbackMethOnEvent apch eventCallBack
ALP_Area_CallbackMethPopup appc popupCallback
ALP_Area_CallbackMethSelect apse selectCallback
ALP_Area_CheckData DATA

ALP_Area_ClearCache cach

ALP_Area_ClickDelay edel clickHoldDelay
ALP_Area_ClickedCell evcC

ALP_Area_ClickedCol evce

ALP_Area_ClickedRow ever

ALP_Area_ColDivColor colc colDividerColor
ALP_Area_ColsInGrid coln colsInGrid
ALP_Area_ColsLocked coll lockedCols
ALP_Area_ColumnLock clck allowColumnLock
ALP_Area_ColumnResize cres allowColumnResize
ALP_Area_Columns COLS numColumns
ALP_Area_Compatibility comp compatibility
ALP_Area_CompHideCols cohc hideColumns
ALP_Area_CopyFieldSep ecfd copyFieldDelimiter
ALP_Area_CopyFieldWrapper ecfw copyFieldWrapper
ALP_Area_CopyHiddenCols echc copyHiddenColumns
ALP_Area_CopyOptions ecop copyOptions
ALP_Area_CopyRecordSep ecrd copyRecordDelimiter
ALP_Area_Copyright copy

ALP_Area_DataHeight Adhi

ALP_Area_DataWidth Adwd

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 282

ALP_Area_DefFmtBoolean dfbo

ALP_Area_DefFmtDate dfda

ALP_Area_DefFmtinteger dfin

ALP_Area_DefFmtLong dflo

ALP_Area_DefFmtPicture dfpi

ALP_Area_DefFmtReal dfre

ALP_Area_DontSetCursor DSCU

ALP_Area_DontSortArrays sono dontSortArrays
ALP_Area_DoubleClick evtD

ALP_Area_DragAcceptColumn ddac acceptColumnDrag
ALP_Area_DragAcceptLine ddal acceptLineDrag
ALP_Area_DragColumn ddco dragColumn
ALP_Area_DragDataType ddDT

ALP_Area_DragDstArea ddDA

ALP_Area_DragDstCell ddDc

ALP_Area_DragDstCellCodes dddc dstCellCodes
ALP_Area_DragDstCol ddDC

ALP_Area_DragDstColCodes dddC dstColCodes
ALP_Area_DragDstProcessI|D ddDP

ALP_Area_DragDstRow ddDR

ALP_Area_DragDstRowCodes dddR dstRowCode
ALP_Area_DraglLine ddin dragLine
ALP_Area_DragOptionKey ddra dragWithOptionKey
ALP_Area_DragProcessID ddpn

ALP_Area_DragRowMultiple ddrm multipleRowDrag
ALP_Area_DragRowOnto ddro ontoRow
ALP_Area_DragScroll ddps dragScroll
ALP_Area_DragSrcArea ddSA

ALP_Area_DragSrcCell ddSc

ALP_Area_DragSrcCellCodes ddsc srcCellCodes
ALP_Area_DragSrcCol ddSC

ALP_Area_DragSrcColCodes ddsC srcColCodes
ALP_Area_DragSrcRow ddSR

ALP_Area_DragSrcRowCodes ddsR srcRowCodes
ALP_Area_DrawFrame drfr drawFrame
ALP_Area_EntryAllowArrows ecnr navigateUsingArrows
ALP_Area_EntryAllowReturn ecar allowReturn
ALP_Area_EntryAllowSeconds ects allowSeconds
ALP_Area_EntryCell eceC

ALP_Area_EntryClick eccl entryClick
ALP_Area_EntryColumn ecec

ALP_Area_EntryExit ecex

ALP_Area_EntryFirstClickMode ecch firstClick

Property Values, Constants and XML Names

@ |283

Appendix | - Codes

Property Constant Property Value (selector) Property XML Name
ALP_Area_EntryGotoCell ecgC

ALP_Area_EntryGotoColumn ecgc

ALP_Area_EntryGotoGridCell ecgg

ALP_Area_EntryGotoRow ecgr

ALP_Area_EntryGridCell eceg

ALP_Area_EntryHighlight echi

ALP_Area_EntryHighlightE eche

ALP_Area_EntryHighlightS echs

ALP_Area_EntryInProgress ecea

ALP_Area_EntryMapEnter ecme mapEnterKey
ALP_Area_EntryModified ecem

ALP_Area_EntryPrevCell ecpC

ALP_Area_EntryPrevColumn ecpc

ALP_Area_EntryPrevGridCell ecpg

ALP_Area_EntryPrevRow ecpr

ALP_Area_EntryRow ecer

ALP_Area_EntrySelectedText eces

ALP_Area_EntrySkip ecsk

ALP_Area_EntryText ecet

ALP_Area_EntryValue ecev

ALP_Area_Event evtT

ALP_Area_EventChar evtC

ALP_Area_Event_Filter evtF

ALP_Area_EventKey evtK

ALP_Area_EventModifiers evtM

ALP_Area EventPosH evtH

ALP_Area EventPosV evtV

ALP_Area_FillCache data

ALP_Area_FillNumberSign fils

ALP_Area_Ftrindent frin footerindent
ALP_Area_FtrindentH frih

ALP_Area_FtrindentV friv

ALP_Area_Hdrindent hrin headerindent
ALP_Area_HdrindentH hrih

ALP_Area_HdrindentV hriv

ALP_Area_HeaderMode hdrm headerMode
ALP_Area_HideHeaders hhid hideHeaders
ALP_Area_HierIndent hiid indentHierarchy
ALP_Area_lgnoreMenuMeta emet ignoreMenuMeta
ALP_Area_lIgnoreSoftDeselect enis ignoreSoftDeselect
ALP_Area_IsArea isEA

ALP_Area_Kind kind

ALP_Area_LastError (empty string)

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 284

ALP_Area_LimitRows

limR

ALP_Area_ListHeight Alhi

ALP_Area_ListWidth Alwd

ALP_Area_MinFtrHeight fmin minFooterHeight
ALP_Area_MinHdrHeight hmin minHeaderHeight
ALP_Area_MinRowHeight rmin minRowHeight
ALP_Area_MiscColor1 mic1 miscColor1
ALP_Area_MiscColor2 mic2 miscColor2
ALP_Area_MiscColor3 mic3 miscColor3
ALP_Area_MiscColor4 mic4 miscColor4
ALP_Area_MoveCellOptions como moveCellOptions
ALP_Area_MoveRowOptions romo moveRowOptions
ALP_Area_Name name name
ALP_Area_NumFtrLines ftrl footerLines
ALP_Area_NumHdrLines hdrl headerLines
ALP_Area_NumRowLines rowl rowLines
ALP_Area_Path path

ALP_Area_ReadOnly ronl

ALP_Area_Redraw upds

ALP_Area_ResizeDuring redu resizeDuring
ALP_Area_RollOverCell eviC

ALP_Area_RollOverCol evic

ALP_Area_RollOverRow evir

ALP_Area_RowDivColor rowc rowDividerColor
ALP_Area_RowHeight rowh

ALP_Area_RowHeightFixed rowf rowHeightFixed
ALP_Area RowlIndent roin rowlndent
ALP_Area_RowIndentH roih

ALP_Area_RowIndentV roiv

ALP_Area_Rows ROWS

ALP_Area_RowsInGrid rown rowsInGrid
ALP_Area_ScrollColumns scco scrollColumns
ALP_Area_ScrollLeft scrl

ALP_Area_ScrollTop scrt

ALP_Area_SelClick selC selectClick
ALP_Area_SelCol selc

ALP_Area_Select SELC

ALP_Area_Selected sele

ALP_Area_Self self

ALP_Area_SelGotoRec seLR

ALP_Area_SelHighlightMode seld highlightMode

ALP_Area_SelKeepOnTypeAhead

selT (obsolete, replace by

ALP_Area_TypeAheadEffect)

ALP_Area_SelMultiple

selm

multipleRows

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 285

ALP_Area_SelNoAutoSelect selA noAutoSelect
ALP_Area_SelNoCtrlSelect selX noCtriSelect
ALP_Area_SelNoDeselect selD noDeselect
ALP_Area_SelNoHighlight selh noHighlight
ALP_Area_SelNone seln allowNoSelection
ALP_Area_SelPreserve selP preserve
ALP_Area_SelRow selr

ALP_Area_SelSetName seCS

ALP_Area_SelType selt type
ALP_Area_SendEvent seev

ALP_Area_ShowColDividers cold showColDivider
ALP_Area_ShowFocus focu showFocus
ALP_Area_ShowFooters fshw showFooters
ALP_Area_ShowHScroll scrh showHScroll
ALP_Area_ShowRowDividers rowd showRowDivider
ALP_Area_ShowSortEditor soED

ALP_Area_ShowSortIndicator hdrs showSortIndicator
ALP_Area_ShowVScroll scrv showVScroll
ALP_Area_ShowWidths dwdt displayPointWidth
ALP_Area_SmallScrollbar scsm smallScrollbar
ALP_Area_Sort SORT

ALP_Area_SortCancel soca cancel
ALP_Area_SortColumn S0CO sortColumn
ALP_Area_SortDuring sodu sortDuring
ALP_Area_SortList soli sortList
ALP_Area_SortListNS soLl

ALP_Area_SortOK sook ok
ALP_Area_SortOnLoad sold sortOnLoad
ALP_Area_SortPrompt sopr prompt
ALP_Area_SortTitle soti title
ALP_Area_SRPTableReport SRPt

ALP_Area_TablelD tbid mainTable
ALP_Area_ToolTip tips

ALP_Area_TopRow artp

ALP_Area_TraceOnError TRAC

ALP_Area_TypeAheadEffect selT

ALP_Area_TypeAheadFieldMode tahF

ALP_Area_TypeAheadString tahS

ALP_Area_TypeAheadTime tahT

ALP_Area_UpdateData daup

ALP_Area_UseDateControls endc useDateControls
ALP_Area_UseEllipsis elip useEllipsis
ALP_Area UserBLOB usrb userBLOB

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 286

ALP_Area_UserSort sous userSort
ALP_Area_UseTimeControls entc useTimeControls
ALP_Area_Version vers

ALP_Area_Visible visi

ALP_Area_WindowsClip CLIP

ALP_Area_WindowsText DIEN

ALP_Area XML xml

ALP_Area_XMLAP Axml

ALP_Cell_BackColor belr backColor
ALP_Cell_BaseLineShift basl baseLineShift
ALP_Cell_BottomBorderColor cobc bottomBorder_color
ALP_Cell_BottomBorderOffset cobo bottomBorder_offset
ALP_Cell_BottomBorderWidth cobw bottomBorder_width
ALP_Cell_Clear clr

ALP_Cell_ClearStyle sclr

ALP_Cell_Enterable ente enterable
ALP_Cell_FillColor cofc fillColor
ALP_Cell_Flags flgs features
ALP_Cell_FontName fnam font
ALP_Cell_FormattedValue valf

ALP_Cell_HorAlign halg halign
ALP_Cell_HorizontalScale hors hScale
ALP_Cell_Invisible visi invisible
ALP_Cell_Kind kind

ALP_Cell_LeftBorderColor colc leftBorder_color
ALP_Cell_LeftBorderOffset colo leftBorder_offset
ALP_Cell_LeftBorderWidth colw leftBorder_width
ALP_Cell_LeftlconFlags colF leftlconFlags
ALP_Cell_LeftlconID coll leftlconID
ALP_Cell_LineSpacing lisp lineSpacing
ALP_Cell_Reveal reve

ALP_Cell_RightBorderColor corc rightBorder_color
ALP_Cell_RightBorderOffset coro rightBorder_offset
ALP_Cell_RightBorderWidth corw rightBorder_width
ALP_Cell_RightlconFlags corF rightlconFlags
ALP_Cell_RighticonID corl rightlconID
ALP_Cell_Rotation rotd rotation
ALP_Cell_ScrollTo scto

ALP_Cell_Size size size
ALP_Cell_StyleB styB bold
ALP_Cell_StyleF styF qdStyle
ALP_Cell_Stylel styl italic
ALP_Cell_StyleS styS strike-through

Property Values, Constants and XML Names

@ |287

Appendix | - Codes

Property Constant Property Value (selector) Property XML Name
ALP_Cell_StyleU styU underline
ALP_Cell_TextColor tclr textColor
ALP_Cell_TopBorderColor cotc topBorder_color
ALP_Cell_TopBorderOffset coto topBorder_offset
ALP_Cell_TopBorderWidth cotw topBorder_width
ALP_Cell_Value valu

ALP_Cell_VertAlign valg valign
ALP_Cell Wrap wrap wrap
ALP_Cell_XML xml

ALP_Column_Attributed attr attributed
ALP_Column_BackColor bclr backColor
ALP_Column_BaseLineShift basl baseLineShift
ALP_Column_CalcHeight chig autoHeight
ALP_Column_Calculated calc calculated
ALP_Column_Callback call callback
ALP_Column_DisplayControl disp displayControl
ALP_Column_Enterable ente enterable
ALP_Column_EntryControl entc entryControl
ALP_Column_Filter entf filter
ALP_Column_FindCell coce

ALP_Column_FontName fnam font
ALP_Column_FooterText fxt footerText
ALP_Column_Format fmt format
ALP_Column_FromCell ceco

ALP_Column_FtrBackColor fbcl backColor
ALP_Column_FtrBaseLineShift fbls baseLineShift
ALP Column_FtrFontName ffnm font
ALP_Column_FtrHorAlign fhal halign
ALP_Column_FtrHorizontalScale fhos hScale
ALP_Column_FtrLineSpacing flis lineSpacing
ALP_Column_FtrRotation frot rotation
ALP_Column_FtrSize fsiz size
ALP_Column_FtrStyleB fstB bold
ALP_Column_FtrStyleF fstF qdStyle
ALP_Column_FtrStylel fstl italic
ALP_Column_FtrStyleS fstS strike-through
ALP_Column_FtrStyleU fstU underline
ALP_Column_FtrTextColor ftcl textColor
ALP_Column_FtrVertAlign fval valign
ALP_Column_FtrWrap fwrp wrap
ALP_Column_HdrBackColor hbcl backColor
ALP_Column_HdrBaseLineShift hbls baseLineShift
ALP_Column_HdrFontName hfnm font

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 288

ALP_Column_HdrHorAlign

hhal

halign

ALP_Column_HdrHorizontalScale hhos hScale
ALP_Column_HdrLineSpacing hlis lineSpacing
ALP_Column_HdrRotation hrot rotation
ALP_Column_HdrSize hsiz size
ALP_Column_HdrStyleB hstB bold
ALP_Column_HdrStyleF hstF qdStyle
ALP_Column_HdrStylel hstl italic
ALP_Column_HdrStyleS hstS strike-through
ALP_Column_HdrStyleU hstU underline
ALP_Column_HdrTextColor htcl textColor
ALP_Column_HdrVertAlign hval valign
ALP_Column_HdrWrap hwrp wrap
ALP_Column_HeaderText htxt headerText
ALP_Column_HorAlign halg halign
ALP_Column_HorizontalScale hors hScale
ALP_Column_ID id id
ALP_Column_Indexed idx datalndexed
ALP_Column_Kind kind

ALP_Column_Length len dataSize
ALP_Column_LineSpacing lisp lineSpacing
ALP_Column_Locked lock locked
ALP_Column_PopupArray entp entryPopup
ALP_Column_PopupArrayKind entP kind
ALP_Column_PopupMap entM entryMap
ALP_Column_PopupMenu entm

ALP_Column_ PopupName entN entryPopupName
ALP_Column_Reveal reve

ALP_Column_Rotation rotd rotation
ALP_Column_ScrollTo scto

ALP_Column_Size size size
ALP_Column_SortDirection sord sort
ALP_Column_Source src source
ALP_Column_StyleB styB bold
ALP_Column_StyleF styF qdStyle
ALP_Column_Stylel styl italic
ALP_Column_StyleS styS strike-through
ALP_Column_StyleU styU underline
ALP_Column_TextColor tclr textColor
ALP_Column_Type type dataType
ALP_Column_Uppercase entu uppercase
ALP_Column_UserText Utxt userText
ALP_Column_VertAlign valg valign

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Q

Appendix | - Codes

Property XML Name

| 289

ALP_Column_Visible visi visible
ALP_Column_Width widt width
ALP_Column_WidthUser uwdt userWidth
ALP_Column_Wrap wrap wrap
ALP_Column_XML xml

ALP_Drop_DragAcceptColumn ddac acceptColumnDrag
ALP_Drop_DragAcceptLine ddal acceptLineDrag
ALP_Drop_DragDstCodes dddc dstCodes
ALP_Drop_DragProcessID ddpn

ALP_Drop_DragSrcArea ddSA

ALP_Drop_Kind kind

ALP_Drop_Name name name
ALP_Drop_XML xml

ALP_Object_Columns COLS

ALP_Object_ColumnWidth widt

ALP_Object_ColumnWidthUser uwdt

ALP_Obiject_DragDstCellCodes dddc

ALP_Object_DragDstColCodes dddC

ALP_Object_DragDstRowCodes dddR

ALP_Obiject_DragSrcCellCodes ddsc

ALP_Object_DragSrcColCodes ddsC

ALP_Object_DragSrcRowCodes ddsR

ALP_Obiject_Fields Xsrc

ALP_Object_FooterText ftxt

ALP_Object_FooterTextNH fTXT

ALP_Object_Grid GRID

ALP_Object_HeaderText htxt

ALP_Object_HeaderTextNH hTXT

ALP_Object_Hierarchy HIER

ALP_Object_RowHide rhid

ALP_Object_RowSelection ROWS

ALP_Object_Selection SELC

ALP_Object_Sort SORT

ALP_Object_SortList soli

ALP_Object_SortListNS soLl

ALP_Object_Source src

ALP_Obiject_Type type

ALP_Object_Visible visi

ALP_Row_BackColor bclr backColor
ALP_Row_ BaseLineShift basl baseLineShift
ALP _Row_ Clear clr

ALP_Row_ClearStyle sclr

ALP_Row Collapse hicr

Property Values, Constants and XML Names

Property Constant

Property Value (selector)

Property XML Name

Q

Appendix | - Codes

| 290

ALP_Row_CollapseAll hica

ALP_Row_Expand hier

ALP_Row_ExpandAll hiea

ALP_Row_Flags flgs features
ALP_Row FontName fnam font
ALP_Row_Height high height
ALP_Row Hide rhid

ALP_Row_HorAlign halg halign
ALP_Row_HorizontalScale hors hScale
ALP_Row_Kind kind

ALP_Row_Level hile

ALP_Row_LineSpacing lisp lineSpacing
ALP_Row_Parent hipa

ALP_Row_Reveal reve

ALP_Row_Rotation rotd rotation
ALP_Row_RowOffset roff offset
ALP_Row_ScrollTo scto

ALP_Row_Size size size
ALP_Row_StyleB styB bold
ALP_Row_StyleF styF qdStyle
ALP_Row_Stylel styl italic
ALP_Row_StyleS styS strike-through
ALP_Row_StyleU styU underline
ALP_Row_StyleXML Axml

ALP _Row_TextColor telr textColor
ALP_Row_VertAlign valg valign
ALP_Row Visible visi

ALP_Row_Wrap wrap wrap
ALP_Row_XML xml

ALP_Row_XML xml xml

Property Values, Constants and XML Names

@ |291

Appendix | - Codes

Arealist Pro Edit Menu Gonstants

Constant Value

AL Edit Menu Undo Bit 0

AL Edit Menu Redo Bit 1

AL Edit Menu Cut Bit 2

AL Edit Menu Copy Bit 3

AL Edit Menu Paste Bit 4

AL Edit Menu Clear Bit 5

AL Edit Menu Select All Bit 6

AL Edit Menu Entry Bit 15

AL Edit Menu Setup Bit 16

AL Edit Menu Handled Bit 17

AL Edit Menu Undo Mask 1

AL Edit Menu Redo Mask 2

AL Edit Menu Cut Mask 4

AL Edit Menu Copy Mask 8

AL Edit Menu Paste Mask 16

AL Edit Menu Clear Mask 32

AL Edit Menu Select All Mask 64

AL Edit Menu All ltems Mask 127
AL Edit Menu Entry Mask 32768
AL Edit Menu Setup Mask 65536
AL Edit Menu Handled Mask 131072

ArealList Pro Modify Arrays Constants

Constant Value
AL Modify Insert info 0

AL Modify Insert action 1
AL Modify Delete info 2
AL Modify Delete action 3

Arealist Pro Edit Menu Constants - AreaList Pro Modify Arrays Constants

@ |292

Appendix Il — Troubleshooting and FAQs

Appendix I
Troubleshooting and FAQs

Here are some usual questions received by our technical support. You can find more on the ArealList Pro forum.

AL_Register returns zero

In AreaList Pro previous versions AL_Register used to return 1 when registered. Now it returns 0.

With ArealList Pro version 9, zero means no error for all commands. Now the plugin is correctly activated if the result code is zero.
See AL_Reqgister.

Alternately to AL_Register, you can place a plain text file into your 4D Licenses folder or use the Demo mode dialog “Register”
button. This is only valid for non-unlimited licenses.

Undefined parameters

A compiler runtime error occurs with a message that the parameters are undefined.

You must define the parameters in the entry started and entry finished callbacks as long integers.

See the Callbacks topic.

Empty titles in 4D v11

Button'’s titles are empty (or boolean labels, etc.) with 4D v11.

The resources have been transferred to XLIFF files where you can find various default values. For example, «AreaList™ Pro
Format Defaults» is a group in ‘ALP.xIf’ file.

All text strings (except Advanced Properties) are also set from XLIFF files.

4D v11 does not support XLIFF files in plugins: copy ALP.xIf into your database’s Resources.

AL_Register returns zero — Undefined parameters — Empty titles in 4D v11

http://forums.e-node.net

Q ..

Appendix Il — Troubleshooting and FAQs

Scrolling

“Ghost” scrollbars

Arealist Pro’s scroll bars show up on other pages.

If an Arealist Pro area is displayed on a form in a window, and another form is going to be displayed in the window with DIALOG,
ADD RECORD or MODIFY RECORD commands, or the user switches to a different page in the same form, you must inform the
Arealist Pro object that another form will be displayed.

To do this, use the ALP_Area_Visible property of AL_SetArealLongProperty to:

1. deactivate the ArealL.ist Pro area

2. hide the scroll bars

Note that you will need to call ALP_Area_Visible again to reactivate the area.

For example:
AL_SetArealLongProperty(area; ALP_Area_Visible;0) //hide the area
AL_SetAreaLongProperty(arca; ALP_Area Visible;1) //show the area

This setting may also be useful on Windows, in case you open a dialog in the same window as an ArealList Pro area, and the cursor
and typed characters do not appear when they are located over (or close to) the underlying ArealList Pro area coordinates (in the
calling layout).

“Reveal” properties

Is the ability to "reveal" a row/column/cell implemented? Those selectors (i.e. ALP_Row_Reveal, etc.) have a type of "n/a" and
when | try to use them | get an error = 5. Is there another way to force the area to scroll so that a particular row/column/cell is
visible?

Yes, it is implemented. «Reveal» properties do not expect any value (they are not real properties), so you can use any kind of setter
with any value (there is no getter implemented - the result is 5 aka ALP_Err_InvalidRequest).

For example, the following line will reveal (scroll to) the row number $row:
AL_SetRowLongProperty (area;$row;ALP_Row_Reveal;0)

Another way is to set the scrollbars directly - see the ALP_Area_ScrollLeft and ALP_Area_ScrollTop properties (using points, not
column/row numbers).

Reveal properties can be called in On Load phase only for areas with fixed row height areas.

Scrolling

@ |294

Appendix Il — Troubleshooting and FAQs

Calculating the scrollbar and area width

How do | determine the width of the vertical scrollbar? | need to calculate the entire width of the AreaL.ist Pro area so | can
resize the window after changing the columns programmatically.

There is no accessor for scrollbar width (system default is used), but you can use these (read-only) properties: ALP_Area_ListWidth,
ALP_Area_ListHeight, ALP_Area_DataWidth, ALP_Area_DataHeight

«List» is the Data area of the ArealL.ist Pro area - without frame, scrollbars, headers, footers - just the data part (on screen).

«Data» is the actual data size - from this the scrollbars are computed

For example, lets have a small AreaList Pro area on a form, ListWidth = 200 (AreaList Pro object size would be around 220 points)
DataWidth = 250 (it is irrelevant how many columns, the grid width is measured)

- the horizontal scrollbar will be active (data is wider than screen view)

DataWidth = 150

- the horizontal scrollbar will be inactive

So you have to get ALP_Area_ListWidth equal to ALP_Area_DataWidth by resizing the area/window.

Horizontal scrollbar modes

In the ALP_Area_ShowHScroll property, how is «0 = Automatic, Not Shown» different than «Automatic, Shown»? And what is
the default value?

The horizontal scrollbar property has two modes: automatic hiding (dependent on data with and area width) and manual.

Both modes can have the scrollbar visible (shown) or hidden (not shown).

m 0 - automatic, hidden: the scrollbar is hidden by Areal.ist Pro, because the area is wide enough to show all columns

m 1 - automatic, shown: the scrollbar is shown by Arealist Pro, because the area is not wide enough to show all columns
m 2 - manual, always hidden: the developer chose to always hide the scrollbar

m 3 - manual, always shown: the developer chose to always show the scrollbar

Default value is «auto-hide» = «hide when not needed, show otherwise». It is actually initialized to 1, which means it will be 0 or
1 depending on data and area width.

To always show it, set it to 3. To always hide it, set it to 2.

Scrolling

Q ..

Appendix Il — Troubleshooting and FAQs

Scrolling to the top

The following command is generating an error: AL_SetRowLongProperty ($alp_area;1;ALP_Row_Reveal ;0)

The vertical scroll value is set to one (1) but the AreaList Pro object does not have any lines in it.

Generally, when you address an object which does not exist, an error is returned for the pointer variant of Get/Set and TRACE is
executed for other specialized variants (not returning any error).

When you want to reveal row X and that row does not exist, it results in an error.
Try to use row number 0 (header, see Row Numbering) to scroll to the top.

Also, setting the vertical scroll position to zero will work as well:
AL_SetArealLongProperty ($area; ALP_Area_ScrollTop; 0)

Note that ALP_Area_ScrollTop and ALP_Area_ScrollLeft use points, not row (and column) numbers.

Fixed row height and scroll position

Why should the scroll position change when you scroll right to the bottom and don't adjust any rows or change the form height?
I'd have thought under this circumstance it should always be the same value.

Imagine a set of 10,000 records.

The initial row height is computed from the column fonts, padding and ALP_Area_MinRowHeight.

Let's have it at 16 points.

Multiplied by number of rows it gives us the initial data height in points (with small simplification, it is the maximum value for the
vertical scrollbar).

ArealList Pro fetches e.g. 20 rows to be displayed, the rows are measured when displayed.

First row height is 32 (two lines): the array holding the row height is adjusted, the data height and the scrollbar are adjusted
accordingly.

Row #200 height is 64: the height (and the scrollbar) will be adjusted when the row is made visible (this is the time when it is
measured).

Otherwise AreaList Pro would have to fully measure all rows to get correct full data height.
And this has to be done on every column width change.
Using variable row height slows down processing - don't use it if you don't need it.

Row/cell formatting (setting font/size on row/cell level) can also have an impact even though the height is fixed: the row height
computed from the fonts used by columns (default on MacOS is Lucida Grande 13) differs from the row height computed while
displaying the rows (from the fonts used by row/cell).

To avoid this effect, instead of setting a font/size to all rows/cells, apply the style to the columns: row height will be correct and it
will be faster.

Scrolling

@ |296

Appendix Il — Troubleshooting and FAQs

Scrolling to a row

I am having trouble scrolling a list to the selected row. | find it odd that | can select a row by row number but have to scroll by
points (ALP_Area_ScrollTop/ALP_Area_ScrollLeft use points, not row/column numbers).

Use this to make $row the topmost row in the view (if possible):
AL_SetRowLongProperty ($area;$row;ALP_Row_ScrollTo)

Alternatively you can use the following code to make the row visible (no scrolling if already visible):
AL_SetRowLongProperty ($area;$row;ALP_Row_Reveal)

How do | determine the number of pixels to scroll to bring the selected row to the top of the list window?

If you use fixed row height, then it can be computed (ALP_Area_RowHeight), but if you use variable row height, you would have to
get the individual row heights (ALP_Row_Height) to compute it.

Grids

Defining a grid

| am calling AL_GetObjects ($area;ALP_Object_Grid;$columns)
But when the call runs, the $columns array is empty, and $err = 0.

This is because the grid is not yet defined.
When no grid is explicitly defined, AreaList Pro will create it (from all visible columns) on demand i.e. at first update event.

You can create it simply by filling $columns with numbers from 1 to number_of columns_to_be shown.

m In compatibility mode (ALP_Area_Compatibility), number_of columns_to_be_shown is determined by the number of columns
(ALP_Area_Columns) and the number of columns to hide (ALP_Area CompHideCols).

m Otherwise it is determined by visible columns (i.e. having ALP_Column_Visible = 1).

In compatibility mode, visibility of all columns is updated automatically during grid creation.

Number of columns/rows in grid

| tried ALP_Area_ColsInGrid, but that returned -1 for every area.

ALP_Area_ColsInGrid defaults to -1 which means «all columns». This property returns -1 for every area regardless of the
compatibility mode, as long as it is not changed explicitly.

Scrolling — Grids

Q ..

Appendix Il — Troubleshooting and FAQs

When | set ALP_Area_RowsInGrid ArealList Pro threw an error when | passed -1.

Default value for ALP_Area_ColsInGrid is -1 (meaning unlimited = all columns).

Default value for ALP_Area RowsInGrid is 1 (meaning all columns in one row).

You can’t have -1 rows displayed.
You can safely set it to 1 (single row).

Setting it to zero means “use as many rows as needed to show all visible columns in ALP_Area_ColsInGrid columns”.

But when ALP_Area_ColsInGrid is -1 at the same time, it effectively means: “use one row for all columns”.

The order of precedence is ALP_Area_RowsInGrid (if the value > 1), ALP_Area_ColsInGrid (if the value > 1), otherwise all columns
in one row.

Lost grid

I’'m having a problem when | go to restore the columns back to the default arrangement. Somehow the grid order is being lost.

Yes, the grid is lost (cleared) when:
m a column is added

m a column is removed

m a column’s visibility is modified

m ALP_Area_RowsInGrid is set (does not have to be modified)

m ALP_Area_ColsInGrid is set (does not have to be modified)

m AL_SetColOpts is called with a different fifth argument (columns to hide)

To restore the previous user state, you can use AL_Save to save the settings and AL_Load to restore them.
Or just use ALP_Object_Grid at the end of the area initialization.
Note that ALP_Column_Visibility and ALP_Object_Grid are interdependent.

If you add a column, it has to be added to the grid. This is the reason why the grid is cleared (and later re-created from visible
columns). Similarly, if you remove a column, it has to be removed from the grid.

If you make a column visible, it has to be added to the grid.

On the other hand, if you explicitly set the grid (using AL_SetObjects with ALP_Object_Grid), the visibility of columns is modified
according to the new grid: only the columns in the grid will be set to visible, all others will be set to invisible.

Grid formatting

When | display an area as a grid and then switch to a template that does not contain a grid, the grid formatting remains.
I've called AL_RemoveColumn ($elist;-2).

Removing all columns destroys the grid, but does not reset either ALP_Area_RowsInGrid or ALP_Area_ColsInGrid.

Just use AL_SetAreaLongProperty ($eList;ALP_Area ColsInGrid;-1) before adding new columns (assuming you have not changed
ALP_Area_RowsInGrid).

Regarding “template” loading, using AL_Load should reset all area properties to defaults before loading that template.

Grids

@ |298

Appendix Il — Troubleshooting and FAQs

Callbacks

Popup menus

The ALP_Area_CallbackMethPopup property is used when a popup is clicked but no popup array/menu is defined.
How can you click a popup if no popup array/menu is defined?

If a column is enterable by popup and ArealList Pro detects a click on the popup icon:

1. Arealist Pro first checks if it has any PopupMenu or PopupArray/PopupMap defined. If yes, AreaList Pro displays the specified
menu in case of PopupMenu or builds and displays the menu in case of PopupArray/PopupMap.

2. If not, then ArealList Pro checks if a ALP_Area_CallbackMethPopup callback method is defined, and if yes, it calls the method
defined in this property. This 4D method has the following parameters:
PopupCallback (area:L; row:L; column:L; dataType:L) -> bool:Handled

Itis up to the developer to write such a 4D method to handle the click - you may, for example, display your own Data Picker dialog.
Or build a 4D menu and display it with a Hierarchical Popup menu. Or do nothing and return false. It is also up to the developer
to read the current cell value and set a new value as needed.

3. If the ALP_Area_CallbackMethPopup method returns false or is not defined, ArealList Pro displays its own popup: for columns with
date/time values it displays predefined DataPicker or TimePicker dialogs. For other column types Areal.ist Pro displays a menu with
one dimmed value “no items”.

See the example in the Callbacks section. See also Entering data in Arealist Pro with DisplayList.

Edit menu callback

How do we setup a callback to trap the Edit menu?

AL_SetAreaTextProperty ($area; ALP_Area_CallbackMethMenu; «MyEditMenuFunction»)

Once in the callback method, how do we trap for exactly the Copy event (when rows are selected and nothing else (letting the
system handle the rest)?

C_LONGINT ($0;$1;$2) //result, area, event mask
If (($2 = AL Edit Menu Copy Mask) & (AL_GetAreaLongProperty ($1; ALP_Area_SelType) = 0))

//this is a copy operation on selection of row(s)
/lhandle the copy
$0:=AL Edit Menu Handled Mask

End if

Callbacks

19,

Appendix Il — Troubleshooting and FAQs

Event Callback Logic

When we moved to ArealList Pro version 8, it was strongly suggested that we change our programming logic to take advantage

of the new callback system that was introduced. Is this type of centralized management of all callback events no longer
recommend, and all this code should be put back into the individual AreaList Pro objects?

You can use what you want - both are supported.
However, the two last arguments have been dropped and are no longer supported.

With version 8.x, the AL_SetEventCallback command passed 8 parameters to the specified method:
1. ArealList Pro Area

2. Event Code

3. Current event from 4D (mouse down = 1, key down = 3, mouse wheel = 39, cursor/mouse moved = 18)
4. Last Clicked Column

5. Last Clicked Row

6. Modifiers

7. Tip String

8. Arealist Pro Area Name

The event callback is now called as (area; alpEvt; 4Devent; column; row; modifiers)
This is identical to AreaList Pro 8.5, just the 2 last arguments are not passed.

To set a tooltip, instead of setting $7 to the tooltip text, call:
AL_SetAreaTextProperty ($1; ALP_Area_ToolTip; "tool-tip text to show")

To get the area name, instead of using $8, call:
$areaName:=AL_GetAreaTextProperty (31; ALP_Area Name)

Note that with event 18 (AL Mouse moved event), $4 is the column under the pointer and $5 is the row under the pointer.

Also, note that this AL Mouse moved event will not be reported if ALP_Area_Event_Filter is set to 1.

Callbacks

| 299

@ |300

Appendix Il — Troubleshooting and FAQs

Properties

Properties setters types

I’'m confused about long vs real vs text property.

If you want to get/set a property, use the long, real, text or pointer variant depending on the kind of the value you are accessing.
m any boolean property can be coerced to long, real and text
m any integer property can be coerced to real and text

m any real property can be coerced to text (note: decimal dot, not decimal comma)

For example, let's access a boolean property, like ALP_Area_Visible:
C_LONGINT($err)
C_BOOLEAN($bool)
C_LONGINT($long)
C_REAL($real)
C_TEXT($text)
Serr:=AL_GetAreaPtrProperty ($area;ALP_Area Visible;->$bool)
$long:=AL_GetArealLongProperty ($area;ALP_Area_Visible)
$real:=AL_GetAreaRealProperty ($area;ALP_Area_Visible)
Stext:=AL_GetAreaTextProperty ($area;ALP_Area_Visible)

All values are equal: Num ($bool) = Num ($text) = $long = $real

Same with setters:
$bool:=True
Serr:=AL_SetAreaPtrProperty ($area;ALP_Area_Visible;->$bool)
AL_SetArealLongProperty ($arca;ALP_Area_Visible;Num($bool)) //1
AL_SetAreaRealProperty ($area;ALP_Area_Visible;Num($bool)) //1
AL_SetAreaTextProperty ($area;ALP_Area_Visible;String(Num($bool))) // «1»

But for example if you want to set the header text, you will not succeed with long or real variants: you either have to use the text
variant with a text value or the pointer variant with a pointer to a text variable/field.

Using the Redraw property

When should | use ALP_Area Redraw ?

The area is not always redrawn immediately, but after it gets an update event from 4D.

In some situations you may need to have it redrawn immediately:
AL_SetArealLongProperty ($area;ALP_Area_Redraw)

For example, when the user control-clicked on an unselected row, this row is made selected (selection changed), but the area is
not yet redrawn, the callback method is called and/or the object method is executed.

Use the ALP_Area_Redraw property at this point to redraw the Areal.ist Pro area before you show a contextual popup (e.g. dynamic
pop up menu) on the newly selected row.

Properties

Q .

Appendix Il — Troubleshooting and FAQs

Formatting

Font issues

When | try to set a column font to be Geneva 9 point italicized, the font appears non-italicized. Are there some fonts that do not
have the capability of being italicized?

Arealist Pro v9 uses CoreText on Mac and GDI+ on Windows to draw text.
Not all fonts contain italic (or bold) variations and those technologies do not synthesize italic (as QuickDraw did).

For example Geneva on most Macs has only the Regular typeface, Arial has Regular, Bold, Italic and Bold Italic typefaces.

Setting the format for a column

What is the third parameter of the old AL_SetFormat command (format) mapped to in AreaList Pro version 9?
How do we set the physical format for a column, such as "###,##0.00"?

The format is a column property: ALP_Column_Format.Try this:
AL_SetColumnTextProperty ($area; $column; ALP_Column_Format; "### ##0.00")

See Formatting.

Displaying checkmarks

| was using Char(18) in the text with AreaList Pro v8.5 to display a checkmark, this no longer works.

Arealist Pro version 9 uses Unicode and the checkmark at position ASCII 18 is only present in some fonts (on Mac).

Try to use Unicode characters instead:

Square Root 0x221A +/
Check Mark 0x2713 v
Heavy Check Mark 0x2714 v/

Formatting

Q ..

Appendix Il — Troubleshooting and FAQs

Headers

Header Foreground Color on Windows 7

Does Header Foreground Color work on Windows 7? Do you have a sample?

This should work (regardless of ALP_Area_HeaderMode):
AL_SetColumnTextProperty ($area;$column;ALP_Column_HdrTextColor;"yellow")
AL_SetColumnLongProperty ($area;$column;ALP_Column_HdrTextColor;0xFFDDOODD)

Header size and sort indicator

Is there a way to reduce the size of the ArealList Pro Header on Windows 77?

In AreaList Pro version 8 the sort indicator was right from the header text, since ArealList Pro version 9 the sort indicator is above
the column header text. But this wastes some space, especially on forms including many Arealist Pro areas.

m The answer is no when using native headers (ALP_Area_HeaderMode = 0) and Aero interface is active (Windows theme). This
is simply the way it is used on Windows 7

m The answer is yes if the Classic Windows theme is used (XP pictures are used, sorting triangle is at the right side)

m The answer is yes when using ALP_Area_HeaderMode = 1 or 2 - then the sorted column is underlined, the order is not directly
visible, the background color can be set (ALP_Column_HdrBackColor).

Headers

@ |303

Appendix Il — Troubleshooting and FAQs

Rows

Dynamic row height

| can’t seem to get the dynamic row height feature to work.

Set ALP_Area_NumRowLines to 0:
AL_SetArealLongProperty (area;ALP_Area_NumRowLines;0)

When ALP_Area_NumRowLines is set to 0, variable row height is determined by columns having the ALP_Column_CalcHeight
property set to true (1). Use ALP_Column_CalcHeight for the desired column(s) where you want the row heights to be calculated
depending on the cell contents:

AL_SetColumnLongProperty (area;column;ALP_Column_CalcHeight;1)

Row height and header/footer height

How do ALP_Area RowHeightFixed and ALP_Area NumRowLines interact?

ALP_Area_RowHeightFixed is deprecated and superseded by ALP_Area_NumRowLines, ALP_Area_NumHdrLines and ALP_Area_
NumPFtrLines .The proper way is to set the number of rows to zero (setting ALP_Area_NumRowLines to zero).

For example, row heights are fixed when ALP_Area_NumRowLines is non-zero, otherwise the row heigh is determined by columns
having ALP_Column_CalcHeight set to 1 as specified above.

You can set different values for rows, headers and footers, e.g. single line + fixed height for data rows but variable multi-line header
(when you change the column width, the header height can change).

ALP_Area_RowHeightFixed is now emulated as follows:

Getter
(ALP_Area_NumRowLines#0)

Setter
If (ALP_Area_RowHeightFixed=1)
If (ALP_Area_NumRowLines=0)
ALP_Area_NumRowLines:=1
End if
If (ALP_Area_NumHdrLines=0)
ALP_Area_NumHdrLines:=1
End if
If (ALP_Area_NumFtrLines=0)
ALP_Area_NumFitrLines:=1
End if
Else
ALP Area NumRowLines:=0
ALP_Area_NumHdrLines:=0
ALP_Area_NumFtrLines:=0
End if

Rows

19,

Appendix Il — Troubleshooting and FAQs

Columns

Double-clicking an enterable column

| have specified that a column should be enterable, but nothing happens when | double-click it.

You need to set the entry mode - for example:
AL_SetArealLongProperty (area;ALP_Area_EntryClick;2)

Custom column property

It would be helpful to set my own text ID attribute to each column, so that it can be retrieved later.

Each column has a property for free use by the developer: ALP_Column_UserText:

$MyID:="My own custom text id for my column"
AL_SetColumnTextProperty ($area;$columniD;ALP_Column_UserText;$MyID)
AL_GetColumnTextProperty ($area;$columnID;ALP_Column_UserText)

Column width tooltips

An information tooltip is displayed when the modifier keys are pressed even though the ALP_Area_ShowWidths properties is
set to zero.

This is 4D’s tooltip, not ArealList Pro’s.
AL_SetArealLongProperty (eList;ALP_Area_ShowWidths;1) // AreaList Pro information

AL_SetArealLongProperty (eList;ALP_Area_ShowWidths;0) // 4D information

| 304

Columns

http://doc.4d.com/4Dv13/4D/13.4/Displaying-information-about-objects-on-forms-being-executed.300-1226459.en.html

Q ..

Appendix Il — Troubleshooting and FAQs

Calculated columns

| am trying to use AL_AddCalculatedColumn in an Arealist Pro area displaying 4D arrays, but | am getting a
ALP_Err_InvalidPointerType error.

AL_AddCalculatedColumn can be only used to set Calculated Columns with AreaList Pro configured to display fields, not arrays.

If you want to use calculated columns with arrays, you need to set the ALP_Column_Calculated property to true (1) and specify the
callback method name in the ALP_Column_Callback property.

Specific column color with alternate row coloring

| tested an area with alternate row coloring, | wanted a column with a different color, but there is no 'blending' between the
column custom color and the alternate row color. Only the rows with the ‘standard’ (i.e. white) color get the custom column
color, while the alternate colored rows remain untouched. Here is the code used for testing:

AL_SetColumnTextProperty ($area;3;ALP_Column_BackColor;»#C2C2C2») //color for column 3
AL_SetAreaTextProperty ($area;ALP_Area_AltRowColor;»#F2F2F2») //color for altrow
AL_SetArealLongProperty ($area;ALP_Area AltRowOptions;15) //bit 3: mix colors

When you paint 100% white on a black surface, you will get white.

In other words, the alternate row color needs some transparency (non-100% opacity):
AL_SetAreaTextProperty ($area;ALP_Area AltRowColor;»#80E2E2E2») //50% opacity

Setting a multi-styled column

We have a text field that has styled text. | cannot get AreaList Pro to display it without the style characters.
| have added AL_SetColumnLongProperty (ecaRecList;0;ALP_Column_Attributed;1) and it still displayed the style characters.

Use the real column number, not zero; e.g.
AL_SetColumnLongProperty (eaRecList;4;ALP_Column_Attributed;1)

Column # zero is used as default for newly created columns (in any area).
Column # -2 is used for all columns in the specified area.

We don’t recommend using AL_SetColumnLongProperty (eaRecList;0;ALP_Column_Attributed;1) because all columns in all
areas (created after this call) will be multi-styled, causing unnecessary processing.

“Undefined Value” = Different array sizes
What it this ###Undefined Value### that is displayed at the bottom of some columns?

Make sure all arrays are evenly sized! This means that some arrays are larger than others. In this case, previous ArealList Pro
versions used to show the minimum row count (present in all arrays).

Arealist Pro version 9 uses the maximum number (largest array size, including invisible columns).

Smaller arrays will display “###Undefined Value###” for any missing items (array elements).

Columns

19,

Appendix Il — Troubleshooting and FAQs

Events

Selecting rows during the On load event

When | try to select all the rows of an area during the On Load event of an form, nothing happens.
| solved it with a timer but this is not OK

This may happen if the selection is empty during On Load and is modified afterwards. Setting ALP_Object_Selection won'’t operate
because Arealist Pro has no rows.

When a Form is displayed:
m Arealist Pro is called to initialize
m If there are valid Advanced Properties, Arealist Pro is initialized from them (columns are added, etc.)

m The number of rows is detected from the current selection (this is always done when adding the first column, even in arrays mode
and not only when Advanced Properties are used)

m Form and Object methods are called with the On Load event

At this point you can set the initial selection of rows. In case you modify the 4D record selection, you must inform AreaList Pro with
ALP_Area_CheckData (or ALP_Area_UpdateData if the selection was previously not empty and has changed).

The order is important. If you are modifying the 4D selection (especially from an empty one), you need to inform AreaList Pro and
only then can you set the row selection, not before.

If you don’t inform ArealList Pro of the change, it will detect it automatically on the first update event and show the records, but you can’t
modify the selected rows until AreaList Pro knows that there are any rows at all. This is the reason why On Timer is working for you.

If the selection is not empty before initializing the area, it will simply work.

Responding to user events

ArealList Pro does not respond appropriately to user events such as single or double clicks.

See the Events topic in the Programming the ArealList Pro Interface chapter, and refer to the list of event codes.

I’'m not getting any Event #2 from ALP_Area_Event when | double click.

This property returns the raw event, not the ArealList Pro event. For mouse down it is 1, key down is 3, mouse moved is 18...

To get what you expect ask for the ArealList Pro event, not the general event:
$event:=AL_GetArealLongProperty (eArea;ALP_Area_AlpEvent)

Ctrl-Click

Is it normal that on Windows a ctrl-click on a row reports 1 instead of 5, which is reported on Windows with right click and on
Mac with ctrl-click?.

Ctrl on Windows is equivalent to Cmd on Mac. Cmd-click on Mac reports 1.

Ctrl-click on Mac is right-click on Windows (old Mac mouses had only one button).

Events

| 306

19,

Appendix Il — Troubleshooting and FAQs

Hierarchy

Fields

How do you specify the hierarchy level an expansion when the ArealList Pro area is set up using fields?

Identically to arrays mode:
m add columns as usual

m use ALP_Object_Hierarchy to set the hierarchy

Note: there could be a problem with sorting... (arrays with defined hierarchy can be "sorted" (the arrays are not sorted in
hierarchy mode; internal sort index is used); fields are always sorted by 4D).

Hierarchy arrays

If | use arrays as it says, will they automatically stay in sync with the field columns?

The arrays are used to create a hierarchy (hierarchy of objects, no flat arrays), but they are not used afterwards - they are not in sync
even in arrays mode. When you change the selection (or arrays), you have to re-create the hierarchy.

You have to maintain the hierarchy information:
m get the current hierarchy (including the expansion)
m insert the elements into the array AND the hierarchy arrays
m set the new hierarchy
m notify AreaList Pro of updating the arrays
ARRAY INTEGER($alLevel;0)
ARRAY BOOLEAN($aExpanded;0) //ARRAY INTEGER or ARRAY LONGINT can be used, too
$err:=AL_GetObjects2($area;ALP_Object Hierarchy;$alevel;$aExpanded)
/linsert the row of interest into the data arrays

/linsert corresponding row into the $alLevel and $aExpanded
$err:=AL_SetObjects2($area;ALP_Object Hierarchy;$alevel;$aExpanded)
AL_SetArealLongProperty($area;ALP_Area_UpdateData;0)

So using arrays instead of fields is probably a better choice.

Note: arrays used to define the hierarchy are not considered as columns (arrays), they are used only once to create the
hierarchy.

Hierarchy

| 307

@ |308

Appendix Il — Troubleshooting and FAQs

Compatibility mode

My areas are mostly in compatibility mode, so | add the column property for the columns | want to wrap at the end of my
configuration, as well as set the area to be variable row height and to use the same columns that I'm word wrapping as
calculated height columns. Yet no wrapping takes place.

Don’t use compatibility mode if you want to use some of the new features.

In compatibility mode, e.g. the wrap mode only depends on the number of lines to be shown: ALP_Area_NumHdrLines, ALP_Area_
NumRowLines and ALP_Area_NumFtrLines, respectivelly. If the number of lines is 1, wrap mode is set to 0. Any wrap mode set
explicitly (ALP_XXX_Wrap) is ignored (any means at any level: column, row or cell).

When ALP_Area_Compatibility is set to 1, some behaviors are different:

m ALProEvt variable is created & updated

m the visibility of columns (ALP_Column_Visible) is modified according to the number of hidden columns (ALP_Area_CompHideCols)

m the area is made visible on update event (ALP_Area_Visible)

m the wrap mode is set depending on the row lines number

m the area is draggable and droppable even if not set as draggable or droppable in form properties
m when a row or column is drag & dropped in same area, it is moved on drag, not on drop

m the headers on Windows are drawn using pictures (eliminates native “white” Windows 7 headers)

m the horizontal scrolling is set to columns (ALP_Area_ScrollColumns = 1)

m auto-selection of unselected row on click into a popup icon is disabled (ALP_Area_SelNoAutoSelect = 1)

m if only one column is to be displayed, it will have the width of the area

m columns are physically reordered on Drag

You can try to simply turn the compatibility mode off (set ALP_Area_Compatibility to zero), but it depends on your code if it will work
as you expect...

m no ALProEvt - use AL_GetArealLongProperty to get ALP_Area_AlpEvent

m any columns to be hidden have to be maintained

m the area has to be made visible if it was hidden explicitly

m the wrap mode is set depending on the ALP_XXX_Wrap properties (you still need to set the row lines number)
m for drag & drop, the area must have the Draggable and/or Droppable properties enabled in form

m during On Drag event (column = -7, row = -5), the column/row was not yet moved -> use On Drop event (9, 8)

m the columns are not reordered - the order is defined by the grid setup

The rest should work (other properties are not reset to default).

Compatibility mode

19,

Appendix Il — Troubleshooting and FAQs

Advanced Properties

| just can’t get the "Entry allowed via" popup to stick to anything other than "Keyboard Only" in the Advanced Properties. | set it,
and click the OK button, and when | open the Advanced Properties again it's set back to "Keyboard Only".

This is because you are changing it for column «Default».
“Default” settings are used for newly added columns in Advanced Properties only.

Enterability is a column property: click on the column that you want to set, then use the “Entry allowed via” popup...

Detecting a modified value in popup entry

AL_GetCellMod is always returning 1 (Modified) when you select a drop-down menu, whether or not you changed the value.

AL_GetCellMod should always return 1 (true) for popup entry.

On the other hand, ALP_Area_EntryModified will return 1 only if the entry is modified.

AL_GetCellMod will return 1 when the entry is modified or if popup entry is used.
This behavior is compatible with ArealList Pro 8.x.
If you want to find out if the entry was actually modified, use:

$modified:=AL_GetAreaLongProperty($area;ALP_Area EntryModified)

No fields from local table in field mode

When I'm only displaying fields from related tables, but no fields from the local table, the ArealList Pro area only shows a single
row: seemingly one record from a related table, rather than all the rows of my local table.

ArealList Pro uses SELECTION RANGE TO ARRAY to get the values
m only many to one automatic relations are supported

m if there are no columns in the Arealist Pro area and you add a field, that field's table is the master table

Set the master table before adding the first column:
AL_SetArealLongProperty ($area;ALP_Area TablelD;$tablelD)

And yes, there is a known issue: when ArealList Pro builds the SELECTION RANGE TO ARRAY call, the value set in ALP_Area_
TablelD is not honored when there is no field from the master table (it has to be the first field parameter to SELECTION RANGE TO
ARRAY to designate the master table).

Add at least one master table's column, make it invisible:

AL_SetColumnLongProperty ($area;$column;ALP_Column_Visible;0)

Note: this trick is no longer needed in v9.9.2 and above. When all columns are from a related table, the area display is based
upon the current selection from the master table, not the related table’s selection.

Advanced Properties — Detecting a modified value in popup entry — No fields from local table in field mode

| 309

2-Darray. 190
2-states checkbox. 161, 240
3-states checkbox. 161, 240
4Dobject. 153
4D Picture Library 162, 240
4D Server 22
AD VI o 292
cexternal. 148
[format. 96
A

AccesscCode 59
Access “codes” 145
AcCess COdes 146
Advanced Properties. 306, 309
Advanced Properties Dialog 134
AL_AddCalculatedcolumn. 136
AL_AddCalculatedColumn 189, 221
AL_AddColumn. 185, 189, 190
ALAllowdropevent 150, 154
AL_ColorPicker. 215
AL Column entry popuponly. 184
AL Doubleclickevent........................... 63
AL Empty Area Doubleclick 63
AL_GetAreaLongProperty. 191
AL_GetAreaPtrProperty 191
AL_GetAreaTextProperty 192
AL_GetCellLongProperty 207
AL_GetCellMod. 309
AL_GetCellPtrProperty 208
AL_GetCellRealProperty. 208

Q ..

Index

AL_GetCellTextProperty 209
AL_GetColumnLongProperty 196
AL_GetColumnPtrProperty 197
AL_GetColumnRealProperty. 197
AL_GetColumnTextProperty 198
AL GetlLastEvent 40
AL_GetObjects 85, 212
AL_GetObjects2 213
AL_GetPlainText. 218
AL_GetRowLongProperty 201
AL_GetRowPtrProperty. 202
AL_GetRowRealProperty 202
AL_GetRowTextProperty. 203
AL Icon Flags Horizontal Center. 179, 180, 181
AL Icon Flags Horizontal Left 179
AL Icon Flags Horizontal Mask 179
AL Icon Flags Horizontal Right 179
AL Icon Flags OffsetMask 179
AL Icon Flags Vertical Bottom. 179, 180
AL Icon Flags Vertical Center 179
AL Icon Flags VerticalMask 179
AL Icon Flags Vertical Top. 179
Alignment (text). 90
AL_Load. 114, 215
Allow drop. 149
Allowingthedrop 152
Allow or rejectthedrop...................... 100, 150
AL_ModifyArrays. 203
AL Mouse movedevent 110
AL Objectdropevent 149
ALP9.license4Dplugin. 24

Index

ALP_Area_AllowSortEditor. 171
ALP_Area_AlpEvent............... 40, 46, 62, 149, 212
ALP_Area AltRowOptions 171, 176
ALP_Area_CalendarLook 125, 163, 234, 235
ALP_Area_CallbackMethEntryEnd 71,100
ALP_Area_CallbackMethEntryStart 55, 109
ALP_Area_CallbackMethOnEvent 100, 110, 154
ALP_Area_CheckData 155, 275, 276
ALP_Area_ClearCache. 275, 276
ALP_Area_ClickedRow. 46
ALP_Area_ColsInGrid. 70, 170, 171
ALP_Area Columns 191, 196
ALP_Area_Compatibility 36
ALP_Area_ DragDstArea. 61
ALP_Area_DragDstRowCodes. 146
ALP_Area_DragOptionKey 146
ALP_Area_DragSrcArea. 155
ALP_Area_DragSrcRow 147, 191
ALP_Area_DragSrcRowCodes 146
ALP_Area_EntryClick 51, 171, 304
ALP_Area_EntryColumn.................. 55, 108, 109
ALP_Area_EntryFirstClickMode 75, 106, 231
ALP_Area_EntryGotoColumn. 193
ALP_Area_EntryGotoRow 193
ALP_Area_EntryModified 54
ALP_Area_EntryRow 54, 55, 108, 109
ALP_Area_EntrySkip 55, 109
ALP_Area_EntryValue 71
ALP_Area_FillCache. 276
ALP_Area_HdrindentH 194
ALP_Area_HideHeaders. 34, 47
ALP_Area_Hierlndent. 66
ALP_Area_ NumHdrLines 47
ALP_Area_ NumRowLines 47
ALP_Area RowlndentV 47
ALP_Area_ScrollColumns. 37
ALP_Area_ScrollLeft. L 192
ALP_Area_SelMultiple 171
ALP_Area_SelNoAutoSelect. 37
ALP_Area_SelRow 35, 46

ALP_Area SelSetName 236
ALP_Area_SelType. 157
ALP_Area ShowFooters. 47,171
ALP_Area_ShowRowDividers. 171
ALP_Area_ShowSortEditor. 194
ALP_Area_Sort. e 85
ALP_Area_SortColumn. 83
ALP_Area_SortList., 83, 192
ALP_Area_SortPrompt 195
ALP_Area_SRPTableTemplate 223, 272
ALP_Area ToolTip 110
ALP_Area_TypeAheadEffect. 236, 285
ALP_Area UpdateData...................... 275, 276
ALP_Area UseDateControls 162
ALP_Area_UseTimeControls 164
ALP_Area_Visible......... 293
ALP_Cell_Enterable 207
ALP_Cell_FontName 208, 211
ALP_Cell_HorizontalScale 208
ALP_Cell_LeftlconFlags 180
ALP_Cell_LeftlconID. 178, 180
ALP_Cell_RightlconID 178
ALP_Cell Rotation........... 211
ALP Cell TextColor v... 210
ALP_Cell_VertAlign. 209
ALP_Cell_XML 209
ALP_Column_Attributed 42,170, 279
ALP_Column_CalcHeight. 170
ALP_Column_DisplayControl 162, 166, 184
ALP_Column_Enterable 163, 164, 165, 170, 184, 197
ALP_Column_EntryControl. 161
ALP_Column_FontName 47
ALP_Column_Format....................... 66, 170
ALP_Column_HdrFontName. 47
ALP_Column_HdrRotation 199
ALP_Column_HdrSize 47
ALP_Column_HdrStyleB. 47,170
ALP_Column_HeaderText. 49, 170, 198, 200
ALP_Column_HorAlign. 198
ALP_Column_PopupArray 165, 183, 184

Index

ALP_Column_PopupMap 183, 184
ALP_Column_PopupMenu 166, 183
ALP _Column_Size 47
ALP_Column_StyleB. 47,170
ALP_Column_Visible 41, 196
ALP_Column_Width 34,170, 197, 199
ALP_Column_Wrap i 171
Alphachannel., 123
ALP_Object_Columns. 49, 54, 55, 170, 213
ALP_Object_ColumnWidth 272
ALP_Object_ColumnWidthUser 272
ALP_Object_Fields 213
ALP_Object Grid 70, 114, 170, 171
ALP_Object_Hierarchy 66, 174, 176, 214
ALP_Object_Selection 56, 61, 212
ALProEvt. 308
ALP_Row_FontName 203
ALP_Row_Height 202
ALP_Row_HorizontalScale. 202
ALP_Row Parent......... 201
ALP_Row Size....... 205
ALP_Row_StyleF 204
ALP_Row TextColor..........ciiun... 206
AL_Register 24, 41, 216, 256, 292
AL _RemoveColumn 193
AL_Save. 114, 219
AL_SetAreaPtrProperty. oL 194
AL_SetAreaTextProperty. 195
AL_SetCellLongProperty. 209
AL_SetCellPtrProperty 210
AL_SetCellRealProperty. 211
AL_SetCellTextProperty 211
AL_SetColumnLongProperty 198
AL_SetColumnProperty 213, 252
AL_SetColumnPtrProperty 184, 199
AL_SetColumnRealProperty. 199
AL_SetColumnTextProperty 183, 200
AL_Setlcon....... 178, 182, 219
AL_SetObjects 213
AL_SetObjects2 214, 252

AL_SetRowlLongProperty 203
AL_SetRowPtrProperty. 205
AL_SetRowRealProperty 205
AL_SetRowTextProperty. 206
AL Sortbuttonevent. L. 83
AL Sorteditorevent L. 82
AL_SuperReport. 272
Alternate color row settings. 127
Alternate row coloring. 124, 225, 305
Alt/Optionkey 146
APl 37
AppPearanCei 37
ApplytoallColumns. 135
Areawidth. 294
ARGB 123
Array Sizes 305
Attributed 218
Auto-hide 294
AutomaticResize oL 222
Automatic text truncation (ellipsis) 90
Auto-size. 115
B

Baselineshift 90
Bold 90
Boolean properties 34, 38
Booleans. 39, 161
Booleanvalues. 34
Button'stitles 292
C

Cache 219, 276
Cacheclearing 275
Cache Management 275, 277, 292
Calculated column 240
Calculated Column i 105
Calculated Column (arraymode) 118
Calculated Column (fieldmode) 118
Calculated columns. 85, 305

Index

CalendarSet 143, 152
Callback i 78, 99, 149
Callback method. 154
Callback parameters. 99
Callbacks i 160, 292, 298
Cell Properties i, 249
CellStyle. 251
Checkboxes i 77
Checkmarks 301
Clickaction. 106
Click-hold 75
Clickmodes, 74
ColOrS . .o 122
Color(text) 90
Column 239
Column AutomaticResize. 222
Columnecolor. 305
Columncount 191
Columndividers 121
Column (ingrid) 168
Columnnumber 76
Columnnumbers. 114
Columnorder 114, 116
Columns 115
Columnwidth 115, 116, 272, 304
Columnwidths 115
Compatibility 16

Compatibility mode . . 36, 40, 76, 89, 90, 113, 115, 117, 144,
157, 168, 222, 237, 259, 296, 303, 308

Compatibility Mode 36
Compiler. 292
Constants 281
Copy & Drag Properties 224
COPYING. .« 35
Customcheckboxes 77,162, 240
Custompictures 182, 219
Customstyles. i 96

D

Datachecking. L. 275
DataEntry. 74
Dataentrycontrols 106, 161
Data Properties. 224
Dataupdating 275
Date 182
Datecontrols. 162
Dates 97
Debugger 97
Decimal separator. 245
Defaultcolumn 135
Demonstrationmode. 21
Disabling Drag and/orDrop 159
Display 225
Display arrays orfields 30
DisplayList 78, 106, 134, 161, 261, 271, 275, 277, 292
Draganddrop.................. 39, 106, 143, 157, 161
Drag and drop between pluginareas 146
Drag and drop with external objects 148
Drag & drop 308
Drag & Dropo oo it 228
Dragging. 35, 157
Dragging a row withinonearea 158
Dragging from non-plugin objects 152
Draggingtoad4Dobject 158
DraglLine 157
Drop .. 151
DropArea 230
Dropevent 149
Dropfromad4Dobject. 153
Drop from an external object. 150
Drop from external objects 152
Droppedcolum........ 158
Dynamic popupso 106, 110
Dynamic row height 90, 292, 303

Index

Editmenu...... 298
Ellipsiso 90, 91, 228
Empty area below lastrow 246
Empty string fornulldates 97
Emptytitles. 292
Enterable 80
Enterablecolumn L. 304
Enterkey. 91, 231
Entry. ... 230
Entry popup callback. 78
Event 233
Eventcallback. L 100
EventCallback 115, 298
Eventcallback method 152
Eventcodes 278
Events. 40, 81, 278, 306
Expansionstatus. L 174
Externaldocuments 153
Externalobjects 148
Externalwindow L. 151

F

Fieldmode 88, 107
Fields 75
Finalkeys 25
Fixedrowheight 295
Flags. ... 179
Font ... 90
Fontissues....... i 301
Fonts. ... 42
Fontsize........ 90
Fontstyle 90
Footer. 244
Footerrow. 246
Format 301
Formatting. 47, 96, 301
Functions 35

Harddeselect 109
Header 243
Header/footer height. 303
Header Foreground Color. 302
Headerrow....... 246
Headers 35, 302
Headersize. 37, 302
Hexadecimal............. 123
Hiddencolumns 41
Hidecolumns 41
Hidingcolumns. 117, 222
Hierarchical list. 182
Hierarchical List 174
Hierarchical lists 42
Hierarchical popupmenus 165
Hierarchy 222, 247, 307
Hierarchy Level. 174
Highlightedtext. 106
HLnode 182
Horizontal scaling 90
Horizontal scrollbar. 222
Horizontal scrolling 116

Icons. ... e 178, 182
Images 178
Inlinetimecontrol 164
Installation. 17
Internalcache........ 276
Internal Sorting 85
Invisiblecolumns 41
alic 90

Index

Q ..

Index

L Partner 19
License Server, 25 PaSSWOTd .. e 8
LICeNSe tyPeS - - - oo oo 18, 19 Patterns 133, 254
Line breaks . 89 Picture library 219
Line (N grid)o 168 Pictures. 178

Plaintext. 21
Linespacingt 90 ain tex 8
LISt . e e e e 42 POINIET .o 143, 145, 150

Popup....... . 78, 182
LISESHYIE .+ o o v oot 245 opup 8, 182, 309

Popup Callback. 106, 110

Popupdatecontrol 163
M Popup entry in specificcells 80
Machine ID 23 Popupmenus 165, 298
Mappingo 184 Popups 219
Masterkey 25 Popups,dynamic 110
Merged 23 Printing 195
Mergedlicenses 18 Properties 33, 300
Modifiers. 74 Properties setterstypes 300
Modify Arrays 291 Property Values. L. 281
Multi-row selection L. 50
Multi-style 305 R

Read-onlymode 159
N Receivingadrop. 152
New APl .. . 37 Redraw 300
Nulldate 97 Refreshcommands. 276
Number of columnsingrid 296 Register 21

Registering Server licenses 22
0 Regularlicenses. 18

Remotemode. 22
Object Properties 252

Resize. 222
OEM . . 19

ResultCode i, 186
ONDrop . ..o 147, 155

Reveal............ 293, 295
OnDropevent i, 149

Reveal properties 293
Online instant activation 20, 22, 24, 25

RGBvalues. 126
Onlineregistration. 24

RollOver e 73
Onload. e 306

Rotation (text). 90

Row 246
P Row coloringoptions. 127
Parameter Descriptions 186 Rowdivider.............. 226
Parameterso 186, 292 Rowdragging 157

Index

Row height 296
Rowhiding 44
Row (ingrid) 168
Row Numbering 224, 246
Row Style 247

S

Saving fieldvalues L, 77
Scaling (text). 90
Scroll. 223, 295
Scrollbar 222, 294
Scrollbars 293
Scrolling 293, 295
Selectingrows 306
Selection. 236
Selectionlist. 78
Selectionmode. 158
Setters 202
Single-userlicense i 19
Softdeselect. 109
SOt . 237
Sortcolumnlist. 87
Sortorderbutton. 37
Styled 218
Styledtext. 42
SuperReportPro. 195, 223, 271
Support. . . 16
T

Technical Support. 16
TextStyleTags 42, 92, 218, 240, 279
TextStyling 90
Time 164, 182
Timecontrol 164
Timeout. e 88
Trailing minussign 97
Transparencyo... 122, 133, 305
Two-Dimensional Arrays 190
Typeahead 88, 236

Q ..

Index

Typeaheadevent 88
Typeahead infieldmode. 88
U

UndefinedValue 305
Underline 90
Undo. 76
Updates 18
UPPErcaseuuuiiii e 90
Userauto-size. 115
Userevents. 278
'}

V8 compatibility mode. 36
Version 235
Vertical scrollbar 222
Visiblecolumns. 114
W

Width ... 223
Widths. 116
WIindows 7 302
Windows theme 37
Wrapping 89, 90, 308
X

XLIFF . 292
XML 16, 160
XMLNames 281

Index

Q ..

Copyrights and Trademarks

Copyrights
and Trademarks

All trade names referenced in this document are the trademark or registered trademark of their respective holders.

Arealist Pro is copyright Plugin Masters SAS and exclusively published worldwide by e-Node.

4% Dimension, 4D and 4D Server are trademarks of 4D SAS.

Windows, Excel and Vista are trademarks of Microsoft Corporation.

Macintosh, MacOS and MacOS X are trademarks of Apple, Inc.

Copyrights and Trademarks

http://www.e-node.net
http://www.4d.com
http://www.microsoft.com
http://www.apple.com

	About AreaList Pro
	What is AreaList Pro, and what can I do with it?
	Technical Details
	Compatibility Information
	Technical Support

	Installation
	Installing the plugin
	Using AreaList Pro in Demo mode
	Licensing
	Definitions
	n License keys

	Free updates
	License types

	Registering your AreaList Pro License
	Quick and easy way – End-user online instant activation
	Quick and easy way – Developer online instant activation
	The Demonstration mode dialog
	n Retrieving the serial / machine information
	n Using the “Register” button

	Registering Server licenses
	n Registering in Remote mode
	n Registering on 4D Server
	n Merged licenses notes

	Using a text file
	Using AL_Register
	Combining methods
	Online registration
	n “Master” keys
	n Process
	n User interface

	eMail notification

	Getting Started
with AreaList Pro
	Creating your first AreaList Pro Area
	Advanced Properties or Commands?
	Using the Advanced Properties Dialog
	Working with AreaList Pro Commands and Functions
	When to use the Commands and Functions
	Anatomy of an AreaList Pro Command
	Debugger
	Getters and Setters
	n Example

	Properties

	Command Descriptions and Syntax
	Commands
	Functions

	Copying or dragging from an AreaList Pro Area
	Properties
	Headers

	Upgrading from Previous versions of AreaList Pro
	Compatibility Mode
	n Compatibility Mode Behaviour

	What’s Changed
	n Native Look
	n New API
	n Controls for Booleans
	n Drag and Drop
	n Events
	n Obsolete Commands
	n Picture Escape Codes
	n Pictures
	n Registering AreaList Pro
	n Spelling Checker

	What’s New
	n Caching of Formatted Values
	n Column Hiding
	n DisplayList
	n Dynamic Row Height
	n Grid
	n Hierarchical lists
	n Multi-styled text
	n Native drawing of text
	n Text styling
	n Transparency
	n Unicode
	n Value Mapping
	n Wrapped Text
	n XML
	n Column Automatic Resize
	n Row hiding
	n Calculated columns in array mode

	Tutorial
	Example 1: Loading an array from a 4D list
	Example 2: Add header text
	Example 3: Creating arrays from a 4D table
	Example 4: Allow multi-row selection
	Example 5: Allow data entry via double-click
	Example 6: Specifying which columns are enterable
	Example 7: Using a callback method to check
data entry validity
	1. Create the callback method
	2. Tell AreaList Pro when to call the callback method

	Example 8: Using both an Entry and Exit callback
	1. The Entry Callback method
	2. Tell AreaList Pro when to call the callback method

	Example 9: Using an Event callback instead of
the On Plug in Area event
	Example 10: Drag and drop between areas
	Example 11: Determining a user’s action
	Example 12: Using Hierarchical Lists
	Example 13: Grids
	Example 14: Date Formatting Options
	Example 15: Cell coordinates properties

	Programming the AreaList Pro
User Interface
	Entering Data
	Initiating Data Entry
	Two user click modes
	n Click or double-click with optional modifiers
	n Click-hold
	n Summary

	Editing 4D fields
	Cell change properties
	“Undo” value
	Saving field values
	Checkboxes
	Bullet “Password” characters
	Entering data in AreaList Pro with DisplayList
	Popup entry in specific cells
	Leaving a Cell

	Events
	Sorting
	The Sort Editor
	Button labels
	Taking control of the Sort
	Setting the sort indicator and sorted column list
	Bypassing the Sort editor
	n Using 4D code
	n Using AreaList Pro

	Internal Sorting
	Calculated columns
	Comma-separated list vs array
	Restoring highlighted selection

	Typeahead
	Text wrapping
	Compatibility mode off
	Compatibility mode on

	Text Styling
	Area properties
	Column Properties
	Row Properties
	Cell Properties
	Object Properties

	Formatting
	Column property
	Custom styles
	Empty string for null dates

	Using the debugger
	Trace mode
	Getting the last error
	Compiled mode

	Read-only mode

	Using the Callback Methods
	Callback Parameters
	Event
	Area selected
	Area deselected
	Cell entered
	Cell exited
	Popup entry
	Edit menu action
	Calculated column

	Properties to use with Callbacks
	Area properties
	Column Property

	Setting up a Callback
	Warnings

	Calculated Column Callback
	Using Callback Methods During Data Entry
	Executing a Callback Upon Entering a Cell
	n Parameters
	n Click action

	Entry mode
	n Popup menu entry
	n Field mode parameter

	Executing a Callback Upon Leaving a Cell

	Examples
	Example 1
	Example 2: Display a Tooltip
	Example 3: Using a Popup Callback to create dynamic popups

	Columns
	Compatibility mode
	Compatible mode on
	Compatible mode off

	Column numbers in compatible mode off
	Modifying column display
	Using Object Property commands
	Procedurally moving columns

	Column widths
	User auto-size
	Properties
	Saving original settings
	Column wider than the visible area
	Displaying column widths

	Hiding columns
	Hidden columns
	Number of hidden columns

	Grid clearing
	Calculated columns
	Setting a Calculated Column (field mode)
	Setting a Calculated Column (array mode)
	Setting the Callback Method
	n Field mode example

	Array mode example

	Column dividers
	Possible values
	Examples
	Colors

	Working with Colors
	Specifying Colors
	Color values passed as string values
	Color passed in longint values

	Color Options
	Area properties
	Column Properties
	Row Properties
	Cell Properties

	Converting RGB values
	Row Coloring Options
	Combining bits in the Row Options property
	Combining Alt Row color with Background color
	Empty rows

	Coloring Cell Sections
	Summary
	Example
	Getting started
	Padding and Dividers
	n Background and Fill
	n Text Editing
	n Cell Offsets
	n Borders
	n Transparent Fill
	n Final Result

	Custom row highlight
	Empty column background color
	Setting the entire area to a single color
	Patterns

	The Advanced
Properties Dialog
	The Advanced Properties Dialog
	Column Setup Tab
	Default Column
	Apply to all Columns
	Column Settings

	General Options
	Enterability
	Advanced
	Dragging
	Source and Destination Codes

	Preview

	Drag and Drop
	Overview
	Dragging
	Dropping
	Item types
	Controlling the Drag and Drop

	Configuring Drag and Drop
	Setting the 4D Object Properties
	Drag and drop Properties
	n Access “codes” overview
	n Property list
	n Alt/Option key

	What are access “codes”?
	Drag and drop between plugin areas
	n Example (one area)
	n Example (two areas)

	Drag and drop with external objects

	Using the Event callback method
	Allow drop

	After the drop
	Receiving a drop from a non-AreaList Pro Object
	Allowing the drop from external objects in the callback
	CalendarSet
	4D
	External documents
	n Setting up the Area
	n Handling the Drop
	n Utility

	Hints and Tips
	Row dragging in cell selection mode
	Dragging a row to the bottom of the list
	Drag Line property
	Drag and drop and compatibility mode
	Reordering after dragging within one area
	n Rows
	n Column

	Selection mode effects
	Dragging to a 4D object
	Disabling Drag and / or Drop with Read-only mode

	XML
	Data Entry Controls
	Booleans Data Entry
	n Example 1
	n Example 2

	Display
	n Example 1
	n Example 2

	Dates
	n Inline Date Control
	n Popup Date Control

	Time
	n Inline Time Control
	n Popup Time Control

	Popup Menus
	n Hierarchical Popup Menus

	Grids
	n List Style
	n Grid Style

	Terminology
	Creating a Grid
	n Building the Grid Array
	n Filling the Array
	n Creating the Grid
	n Example

	Re-ordering Rows in a Grid
	Grid Properties
	n Area Properties
	n Column Properties
	n Object Properties

	Hierarchical Lists
	n List Style
	n Hierarchical List Style

	How to create a Hierarchical List
	n Hierarchy Level
	n Expansion status
	n Example

	Hierarchical List Properties
	n Area Properties
	n Row Hierarchy Properties
	n Object Properties

	Pictures
	Formatting picture columns
	Using a picture from a field or variable
	Using a picture from the 4D Picture Library
	Displaying custom checkboxes using pictures
	Flags
	Examples
	n Example 1
	n Example 2
	n Example 3
	n Example 4
	n Example 5

	Alignment and offset
	n Offset
	n Width
	n Example

	Displaying custom pictures instead of AreaList Pro's native icons
	n Setting custom icons
	n Internal icon IDs and widths

	Value Mapping
	Example 1: Mapping using 4D’s menu
	Example 2: Mapping using PopupArray/PopupMap

	Commands by Theme
	Using the Command Reference
	Name of the command
	Parameters
	Result
	Parameter Descriptions
	Command Description
	Examples

	Command Themes
	Area
	n AL_AddCalculatedColumn
	n AL_AddColumn
	n AL_GetAreaLongProperty
	n AL_GetAreaPtrProperty
	n AL_GetAreaRealProperty
	n AL_GetAreaTextProperty
	n AL_RemoveColumn
	n AL_SetAreaLongProperty
	n AL_SetAreaPtrProperty
	n AL_SetAreaRealProperty
	n AL_SetAreaTextProperty
	n AL_SuperReport

	Columns
	n AL_GetColumnLongProperty
	n AL_GetColumnPtrProperty
	n AL_GetColumnRealProperty
	n AL_GetColumnTextProperty
	n AL_SetColumnLongProperty
	n AL_SetColumnPtrProperty
	n AL_SetColumnRealProperty
	n AL_SetColumnTextProperty

	Rows
	n AL_GetRowLongProperty
	n AL_GetRowPtrProperty
	n AL_GetRowRealProperty
	n AL_GetRowTextProperty
	n AL_ModifyArrays
	n AL_SetRowLongProperty
	n AL_SetRowPtrProperty
	n AL_SetRowRealProperty
	n AL_SetRowTextProperty

	Cells
	n AL_GetCellLongProperty
	n AL_GetCellPtrProperty
	n AL_GetCellRealProperty
	n AL_GetCellTextProperty
	n AL_SetCellLongProperty
	n AL_SetCellPtrProperty
	n AL_SetCellRealProperty
	n AL_SetCellTextProperty

	Objects
	n AL_GetObjects
	n AL_GetObjects2
	n AL_SetObjects
	n AL_SetObjects2

	Utility
	n %AL_DropArea
	n %AreaListPro
	n AL_ColorPicker
	n AL_Load
	n AL_Register
	n AL_GetPlainText
	n AL_Save
	n AL_SetIcon

	Properties by Theme
	AreaList Pro Area Properties
	AreaList Pro Area General Properties
	AreaList Pro Area Copy & Drag Properties
	AreaList Pro Area Data Properties
	AreaList Pro Area Display Properties
	AreaList Pro Area Drag & Drop Properties
	AreaList Pro Area DropArea Properties
	AreaList Pro Area Entry Properties
	AreaList Pro Area Event Properties
	AreaList Pro Area Plugin Properties
	AreaList Pro Area Sort Properties

	AreaList Pro Column Properties
	Column General Properties
	Column Header Style Properties
	Column Footer Style Properties
	Column List Style Properties

	AreaList Pro Row Properties
	Row Numbering
	Row General Properties
	Row Hierarchy Properties
	Row Style Properties

	AreaList Pro Cell Properties
	Cell General Properties
	Cell Style Properties

	AreaList Pro Object Properties

	Mapping Old Commands
to the AreaList Pro v9 API
	DisplayList
	About DisplayList
	Incompatibilities
	DisplayList Commands
	n DisplayList
	n SetListHeaders
	n SetListButtons
	n SetListSize
	n SetListWidths
	n SetListFormats
	n SetListHdrStyle
	n SetListStyle
	n SetListBehavior
	n SetListColor
	n SetListHdrColor
	n SetListDividers
	n SetListLine
	n SetListSelect
	n GetListButton
	n GetListWidths
	n GetListSelect
	n SetListDone

	Troubleshooting
	Why are one or more of my columns missing?
	Why doesn’t the command key equivalent work for a button?

	Printing with
SuperReport Pro
	How it works
	Command and property
	n AL_SuperReport

	Creating the report
	Example
	Custom templates

	Demonstration database code examples
	Print with SuperReport Pro (default template)
	Print with SuperReport Pro (custom template)
	Editing a custom template

	Cache Management
	Data updating, Data checking and Cache clearing
	Three properties
	Examples
	Upgrading from previous API

	����AreaList Pro version 8 refresh commands
vs version 9 cache management
	Cache clearing or Data updating
	Unnecessary updates

	Appendix I Codes
	AreaList Pro Error Codes
	Result Codes

	Error #-9939
	AreaList Pro Event codes
	AreaList Pro Text Style Tags
	Property Values, Constants and XML Names
	AreaList Pro Edit Menu Constants
	AreaList Pro Modify Arrays Constants

	Appendix II
Troubleshooting and FAQs
	AL_Register returns zero
	Undefined parameters
	Empty titles in 4D v11
	Scrolling
	“Ghost” scrollbars
	“Reveal” properties
	Calculating the scrollbar and area width
	Horizontal scrollbar modes
	Scrolling to the top
	Fixed row height and scroll position
	Scrolling to a row

	Grids
	Defining a grid
	Number of columns / rows in grid
	Lost grid
	Grid formatting

	Callbacks
	Popup menus
	Edit menu callback
	Event Callback Logic

	Properties
	Properties setters types
	Using the Redraw property

	Formatting
	Font issues
	Setting the format for a column
	Displaying checkmarks

	Headers
	Header Foreground Color on Windows 7
	Header size and sort indicator

	Rows
	Dynamic row height
	Row height and header / footer height

	Columns
	Double-clicking an enterable column
	Custom column property
	Column width tooltips
	Calculated columns
	Specific column color with alternate row coloring
	Setting a multi-styled column
	“Undefined Value” = Different array sizes

	Events
	Selecting rows during the On load event
	Responding to user events
	Ctrl-Click

	Hierarchy
	Fields
	Hierarchy arrays

	Compatibility mode
	Advanced Properties
	Detecting a modified value in popup entry
	No fields from local table in field mode

	Index
	Copyrights
and Trademarks

